对称性与守恒定律_第1页
对称性与守恒定律_第2页
对称性与守恒定律_第3页
对称性与守恒定律_第4页
对称性与守恒定律_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对称性与守恒定律问题的提出守恒定律是与宇宙中某些对称性相联系的。 对称性是统治物理规律的规律。守恒定律具有比力学理论更深厚的基础吗?守恒定律的普适性宏观低速宏观、微观、低速、高速2-1 系统的对称性概述一、系统孤立系统封闭系统开放系统系 统外 界物质世界第2章 对称性与守恒定律状态量状态量与系统经历的过程无关。状态量是系统自身所具有的物理量,与外界无关。过程量过程量与系统自身没有必然的联系,过程量是由外界对系统过程产生作用的物理量。外力内力i jFi fi j fj i动量、角动量、能量冲量、功作用在系统上的合力二、对称性定义:某一研究对象(体系、事物;物理规律)对其状态进行某种操作,使其状态

2、由A到B。若两状态等价(相同),就说该研究对象对该操作具有对称性。例对中心对称操作绕中心旋任意角状态A状态B状态A与状态B相同或等价对称性破缺三、几种对称操作1、空间对称操作- 空间变换 1)平移 2)旋转 3)镜象反射 4)空间反演2、时间变换 1)时间平移 2)时间反演3、时空联合操作 伽利略变换- 力学定律具有不变性 洛仑兹变换-物理定律具有不变性物理矢量的镜面反射 极矢量 轴矢量平行于镜面的分量方向相同,垂直于镜面的分量方向相反。平行于镜面的分量方向相反,垂直于镜面的分量方向相同。时间反演 (t -t) 相当于时间倒流 物理上:运动方向反向即: 速度对时间反演变号牛顿第二定律对保守系统

3、-时间反演不变如 无阻尼的单摆 武打片 动作的真实性紧身衣 大袍非保守系统不具有时间反演不变性不真实真实阴阳图联合操作2-2 功、动能和势能一、功和功率功力的空间积累外力作功是外界对系统过程的一个作用量AB微分形式直角坐标系中对于定轴转动的刚体力矩的功是力做功的角量表述单位:焦耳 J ; 千瓦时 例1 作用在质点上的力为在下列情况下求质点从处运动到处该力作的功:1. 质点的运动轨道为抛物线2. 质点的运动轨道为直线XYOXYO做功与路径有关例2、一陨石从距地面高为h处由静止开始落向地面,忽略空气阻力,求陨石下落过程中,万有引力的功是多少?解:取地心为原点,引力与矢径方向相反abhRo例3、质量

4、为2kg的质点在力(SI)的作用下,从静止出发,沿x轴正向作直线运动。求前三秒内该力所作的功。解:(一维运动可以用标量)一对作用力和反作用力的功or1r2r21 m1m2dr1dr2f2f1m1、m2组成一个封闭系统在dt 时间内功率 力在单位时间内所作的功瞬时功率等与力与物体速度的标积单位:瓦特 W二、动能质点的动能质点系统的动能定轴转动的刚体刚体的转动动能ABD rifi 质点的动能定理 合外力对质点所做的功等于质点动能的增量。功是质点动能变化的量度过程量状态量物体受外力作用运动状态变化动能变化末态动能初态动能动能是相对量三、势能1、保守力某些力对质点做功的大小只与质点的始末位置有关,而与

5、路径无关。这种力称为保守力。典型的保守力: 重力、万有引力、弹性力与保守力相对应的是耗散力典型的耗散力: 摩擦力重力的功m在重力作用下由a运动到b,取地面为坐标原点.可见,重力是保守力。 初态量末态量弹力的功可见,弹性力是保守力。弹簧振子 初态量末态量引力的功 两个质点之间在引力作用下相对运动时 ,以M所在处为原点,M指向m的方向为矢径的正方向。m受的引力方向与矢径方向相反。可见万有引力是保守力。rabrdrFMmrdrab2、势能、势函数 在受保守力的作用下,质点从A-B,所做的功与路径无关,而只与这两点的位置有关。可引入一个只与位置有关的函数,A点的函数值减去B点的函数值,定义为从A -B

6、保守力所做的功,该函数就是势能函数。AB定义了势能差选参考点(势能零点),设保守力做正功等于相应势能的减少;保守力做负功等于相应势能的增加。外力做正功等于相应动能的增加;外力做负功等于相应动能的减少。比较重力势能(以地面为零势能点)引力势能(以无穷远为零势能点)弹性势能(以弹簧原长为零势能点)势能只具有相对意义系统的机械能质点在某一点的势能大小等于在相应的保守力的作用下,由所在点移动到零势能点时保守力所做的功。势能和保守力的关系:势能是保守力对路径的线积分dllFlFBA保守力沿某一给定的l方向的分量等于与此保守力相应的势能函数沿l方向的空间变化率。保守力所做元功势能是位置的函数,用U=U(x

7、,y,z)=EP ( x,y,z)表示,称为势函数质点所受保守力等于质点势能梯度的负值那勃勒算符注意:1、只要有保守力,就可引入相应的势能。2、计算势能必须规定零势能参考点。质点在某一点的势能大小等于在相应的保守力的作用下,由所在点移动到零势能点时保守力所做的功。3、势能仅有相对意义,所以必须指出零势能参考点。两点间的势能差是绝对的,即势能是质点间相对位置的单值函数。4、势能是属于具有保守力相互作用的质点系统的。2-3 哈密顿函数描述系统的状态函数一、动量和角动量能量、动量角动量是整个物理学中最重要的物理量大小:mv 方向:速度的方向1、动量 (描述质点运动状态,矢量)系统的动量等于各质点动量

8、的矢量和在量子理论中,微观粒子的速度概念失去了意义,但粒子的动量概念仍然有效。国际单位制中动量的单位是牛顿定律的另一种形式质点所受的外力等于质点的动量对时间的变化率动量具有相对性动量和能量的关系2、角动量mo rPL用叉积定义角动量轴矢量vrma角动量方向角动量大小系统的总角动量例 一质量为m的质点沿着一条空间曲线运动,该曲线在直角坐标下的矢径为:其中a、b、皆为常数,求该质点对原点的角动量。解:已知定轴转动的刚体刚体上的一个质元,绕固定轴做圆周运动角动量为:所以刚体绕此轴的角动量为: 刚体绕定轴的角动量等于其对定轴的转动惯量与角速度之积。刚体转动定律的另一种形式刚体所受的外力矩等于刚体角动量

9、对时间的变化率。转动动能与角动量的关系二、相空间三维欧氏空间构形空间抽象空间自由度-确定系统位置所需的最少独立坐标数。三维欧氏空间中一个质点:用x,y,z确定质点位置,自由度s=3两个质点:自由度s=6,N个质点:自由度s=3N构形空间内的坐标只能确定质点位置相空间-表示系统状态的空间对一个自由度数为s的系统,它所对应的相空间维数为2s。若系统作一维运动,则其自由度数为1,相空间维数为2。将一维坐标和一维速度分别作轴构成直角坐标系。该坐标系平面称为相平面。相平面上的图像称为相图,其中各条曲线称为相轨。用质点的位置坐标和速度分量来构造空间一个质点:用(x,y,z)和(vx,vy,vz)作为坐标,

10、维数为6例 作出无阻尼弹簧振子运动的相图振子的自由度数为1,对应的相空间维数为2。由上式可知在相空间中振子的运动轨迹为一椭圆构造系统的相空间时,有四点需引起注意:1、相空间的维数一定等于系统自由度数的2倍。即2s。2、相空间的坐标中,有s个坐标是取自构型空间中表示系统的位置坐标,另外s个是系统运动速度或动量的坐标。3、构型空间中坐标表示系统位置的坐标不必是笛卡尔坐标。它可以是位矢、角度、相对距离等,这样的坐标称为广义坐标。4、若采用广义坐标,也必须采用一组相对应的广义速度或广义动量。二、系统的哈密顿函数在相空间中研究系统运动会带来很多的方便我们的问题是如何在相空间中找到一个自然表达系统状态的函

11、数。系统的动能是广义动量的函数系统的势能是广义坐标的函数定义新函数=系统的动能+势能是广义动量和广义坐标的函数可表示相空间中系统的状态函数哈密顿函数 定义为保守系统动能函数与势能函数之和, 即:相空间的广义坐标q (=1,2, ,s)相空间的广义速度 (=1,2, ,s)相空间的广义动量p (=1,2, ,s)系统的总动能T=Ek (p1,ps ,t)系统的总势能U=Ep (q1,qs ,t)作机械运动的系统,哈密顿函数就是系统的机械能。例 求弹簧振子系统的哈密顿函数引入哈密顿函数后可以方便地导出系统的运动微分方程,即哈密顿正则方程。单摆的哈密顿量为试写出其正则方程解例 用哈密顿正则方程,求质

12、点在与距离平方反比的有心引力作用下的运动微分方程。解:采用极坐标k为常量, r、为广义坐标, 对应的广义动量运动微分方程三、诺特尔定理诺特尔(E.Nother)对称性可以分为两类,一类是系统自身的对称性,另一类是物理规律的对称性。1918年建立的诺特尔定理,讲的是物理规律的对称性。这个定理指出:如果系统(的哈密顿函数)存在某个不明显依赖时间的对称性,就必然存在一个与之对应的守恒量和相应的守恒定律。2-4 时间平移对称性与能量守恒一、能量守恒定律时间平移的对称性意味着时间的均匀性,这将导致能量守恒。对于小的时间平移,在t 附近作泰勒级数展开若时间平移具有对称性 如果系统对于时间平移是对称的,那么

13、系统的能量一定守恒。能量守恒定律例 一个质量为m的物体,从离地面距离为h的地方A竖直落下,讨论以下两种情况下系统的能量与时间对称性的关系:1)自由落体运动;2)存在于运动速度成正比的空气阻力作用。1)自由落体运动2)存在空气阻力系统的能量不再守恒,表现在两个方面:1) 存在耗散力的作用 2)存在外力作用对于机械系统,表现为:系统内部存在非保守力,外部有不为零的合外力对系统作功机械能守恒定律二、功能原理对于机械系统,当外力、非保守内力做功不为零时外力对系统和系统非保守内力做功之和等于系统机械能的增量。例 一个质量为、半径为的定滑轮(当作均匀圆盘)上面绕有细绳,绳的一端固定在滑轮边上,另一端挂一质

14、量为的物体而下垂。忽略轴处摩擦,求物体由静止下落高度时的速度和此时滑轮的角速度。解:据机械能守恒定律:取滑轮、物体、地球为系统2-5 势能曲线几种典型的势能曲线xEpOrEpOr0EpOr原子相互作用势能曲线势能曲线:势能随位置变化的曲线。1、 平衡位置势能曲线有极值,质点处于平衡位置。势能曲线取极小值的平衡点力总是指向平衡位置势能曲线取极大值的平衡点力总是背离平衡位置稳定平衡不稳定平衡图中势能曲线可分成势阱A、势阱C和势垒B三个区间。设系统机械能守恒,由此势能曲线可分析系统状态的变化。E=E1 系统被限制在势阱A中运动E=E2 系统在势阱A或C中运动,且二者只居其一。E=E3 系统可在xxd

15、的区域自由运动。例 一个质量为m的小球,由一根长为 的细杆连接成摆。可在竖直平面内绕O点自由摆动或转动。细杆质量忽略不计。给定机械能E的摆的运动1、作曲线2、对分别作曲线对给定的E,讨论系统的运动给定机械能E的摆的运动解:1、摆的重力势能为2、摆的机械能用表示为代入2-6 空间平移对称性与动量守恒一、动量守恒定律 空间平移对称性意味着空间的均匀性,这将导致动量守恒。 如果系统对于空间某一方向平移是对称的,那么系统在这个方向上的动量守恒。推广: 如果系统对于空间任意方向平移是对称的,那么系统动量守恒。所有速度是对同一个坐标系而言的。由力和动量的关系例 用空间平移对称性证明牛顿第三定律 设质点由两

16、个质点A、B组成,在没有外力作用的条件下,它们的相互作用势能用U表示。如图,车在光滑水平面上运动。已知m、M、人逆车运动方向从车头经t 到达车尾。求:1、若人匀速运动,他到达车尾时车的速度; 2、车的运动路程; 3、若人以变速率运动, 上述结论如何? 解:以人和车为研究系统,取地面为参照系。水平方向系统动量守恒。1、2、3、二、冲量、动量定理 当系统受到外界作用时,其空间平移对称性被破坏,即外界作用导致系统对称破缺,这必然导致动量不守恒,系统与外界将发生动量转移。1、冲量力的元冲量F0tt12tx+单位:牛顿秒2、动量定理 在一段时间内系统总动量的增量等于这段时间内系统受到外力的冲量。平均冲力

17、例 质量为2.5g的乒乓球以10m/s的速率飞来,被板推挡后,又以20m/s的速率飞出。设两速度在垂直于板面的同一平面内,且它们与板面法线的夹角分别为45o和30o,求:(1)乒乓球得到的冲量;(2)若撞击时间为0.01s,求板施于球的平均冲力的大小和方向。45o 30o nv2v1解:取挡板和球为研究对象,由于作用时间很短,忽略重力影响。设挡板对球的冲力为 则有:45o 30o nv2v1Oxy取坐标系,将上式投影,有:为平均冲力与x方向的夹角。此题也可用矢量法解45o 30o nv2v1Oxyv2v1v1t例 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面上,如果把绳的上端

18、放开,绳将落在桌面上。试证明:在绳下落的过程中,任意时刻作用于桌面的压力,等于已落到桌面上的绳重量的三倍。ox证明:取如图坐标,设t时刻已有x长的柔绳落至桌面,随后的dt时间内将有质量为dx(Mdx/L)的柔绳以dx/dt的速率碰到桌面而停止,它的动量变化率为:根据动量定理,桌面对柔绳的冲力为:柔绳对桌面的冲力FF即:而已落到桌面上的柔绳的重量为mg=Mgx/L所以F总=F+mg=2Mgx/L+Mgx/L=3mg2-7 空间旋转对称性与角动量守恒旋转对称性意味着空间的各向同性,这将导致角动量守恒。外力矩对系统的角冲量(冲量矩)等于角动量的增量。角动量守恒定律的两种情况:1、转动惯量保持不变的单个刚体。2、转动惯量可变的物体。涡旋星系2-8 碰撞物体在短时间内发生相互作用的过程。碰撞过程的特点:1、各个物体的动量明显改变。 2、系统的总动量(总角动量)守恒。弹性碰撞:Ek=0碰撞过程中两球的机械能(动能)完全没有损失。非弹性碰撞: Ek0碰撞过程中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论