版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图象如图所示,若,且,则的值为 ( )ABC1D02如图,在正方体中,分别是的中点,则下列说法错误的是()AB平面CD平面3已知定义在上的可导函数的导函数为,满足,且,则不等式(为自然对数的底数)的解集为( )ABCD4复数
2、的模是( )A3B4C5D75组合数恒等于( )ABCD6若双曲线的一条渐近线为,则实数()AB2C4D7过三点,的圆交y轴于M,N两点,则( )A2B8C4D108设aR,则“a1”是“直线l1:ax2y10与直线l2:x(a1)y40平行”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件9已知函数的图象关于原点中心对称,则A1BCD210设,则“”是“”的A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件11如图,在三棱锥中,面,是上两个三等分点,记二面角的平面角为,则( )A有最大值B有最大值C有最小值D有最小值12如图,在直三棱柱ABCA1B1C1中
3、,ACB90,1ACAA1BC1若二面角B1DCC1的大小为60,则AD的长为( )A2 B3 C1 D2二、填空题:本题共4小题,每小题5分,共20分。13函数的单调递增区间为_14若实数满足条件则的取值范围为_.15学生到工厂劳动实践,利用打印技术制作模型.如图,该模型为长方体挖去四棱锥后所得的几何体,其中为长方体的中心,分别为所在棱的中点,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量为_.16在上随机地取一个数,则事件“直线与圆相交”发生的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在二项式的展开式中,二项式系数之和为256,求展开
4、式中所有有理项.18(12分)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得,利用该正态分布,求:(i)在扶贫攻坚工作中,若使该地区
5、约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?附参考数据:,若随机变量X服从正态分布,则,.19(12分)已知函数的最小正周期为.(1)当时,求函数的值域;(2)已知的内角,对应的边分别为,若,且,求的面积.20(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计
6、,按照50,60),60,70),70,80),80,90),90,100分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在50,60),90,100的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在 80,90) 内的株数,求随机变量的分布列及数学期望.21(12分)如图,在三棱锥中,为的中点,平面,垂足落在线段上,为的重心,已知,. (1)证明:平面;(2)求异面直线与所成角的余弦值;(3)设点在线段上,使得,试确定的值,使得二面角为直二面角.22(10分)已知函数.(1)
7、求的单调区间;(2)设为函数的两个零点,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意得,则,又,即,解得,所以,令,即,解得该函数的对称轴为,则,即,所以,故选C.2、C【解析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果【详解】在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点, 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD-A1B1C1D1中,棱长为2,则B(2,2,0),C1(0,2,2)
8、,M(1,2,1),D1(0,0,2),C(0,2,0),N(0,1,1), MNCC1,故A正确;MN平面ACC1A1,故B成立; MN和AB不平行,故C错误;平面ABCD的法向量 又MN平面ABCD,MN平面ABCD,故D正确故选C【点睛】本题考查命题的真假判断,考空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题3、B【解析】令 所以 ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等4、C【解析】直接利用复数的模的定义求得的值【详解】|, 故
9、选:C【点睛】本题主要考查复数的模的定义和求法,属于基础题5、D【解析】根据组合数的公式得到和,再比较选项得到答案.【详解】,可知 故选:D【点睛】本题考查组合数的计算公式,意在考查基本公式,属于基础题型.6、C【解析】根据双曲线的标准方程求出渐近线方程,根据双曲线的一条渐近线求得m的值【详解】双曲线中,令,得,所以;又双曲线的一条渐近线为,则,解得,所以实数故选:C【点睛】本题考查了利用双曲线的标准方程求渐近线方程的应用问题,是基础题7、C【解析】由已知得,所以,所以,即为直角三角形,其外接圆圆心为AC中点,半径为长为,所以外接圆方程为,令,得,所以,故选C考点:圆的方程8、A【解析】试题分
10、析:运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可解:当a=1时,直线l1:x+2y1=0与直线l2:x+2y+4=0,两条直线的斜率都是,截距不相等,得到两条直线平行,故前者是后者的充分条件,当两条直线平行时,得到,解得a=2,a=1,后者不能推出前者,前者是后者的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系9、B【解析】由函数的图象关于原点对称可得函数是奇函数,由恒成立可得,从而可得结果【详解】函数图象关于原点对称,函数是奇函数,则得,即,即,得,故选B【点睛】本题主要考查函数的奇偶性,属于中档题.
11、 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由 恒成立求解,(2)偶函数由 恒成立求解;二是利用特殊值:奇函数一般由 求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.10、B【解析】根据绝对值不等式和三次不等式的解法得到解集,根据小范围可推大范围,大范围不能推小范围得到结果.【详解】解得到,解,得到,由则一定有;反之,则不一定有;故“”是“”的充分不必要条件.故答案为:B.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题
12、,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系11、B【解析】将三棱锥放入长方体中,设,计算,则,得到答案.【详解】将三棱锥放入长方体中,设,如图所示:过作平面与,与,连接,则为二面角的平面角,设为,则,故.同理可得:设二面角的平面角为,.,当,即时等号成立.故选:.【点睛】本题考查了二面角,和差公式,均值不等式,意在考查学生的计算能力,空间想象能力和综合应用能力.12、A【解析】如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,
13、z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,1,1),C1(0,0,1),设ADa,则D点坐标为(1,0,a),CD(1,0,a),CB设平面B1CD的一个法向量为m(x,y,z)则CB1m=0得m(a,1,1),又平面C1DC的一个法向量为n(0,1,0),则由cos60mn|m|n|,得1a2+212二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得函数的定义域,然后根据复合函数同增异减求得函数的单调递增区间.【详解】由解得或,由于在其定义域上递减,而在时递减,故的单调递增区间为.【点睛】本小题主要考查复合函数单调区间的求法,考查对数函数定义域
14、的求法,属于基础题.14、【解析】分析:根据满足条件画出可行域,然后分析的最值详解:满足条件即,画出可行域:根据可行域可知,目标函数在A点处取得最小值,在C点处取得最大值,所以的取值范围为点睛:点睛:线性规划要能够准确画出可行域,尤其是判断每一个不等式代表的是直线的左侧还是右侧时不能出错,常用带点方法判断比较准确。15、18【解析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得, ,四棱锥OEFG的高3cm, 又长方体的体积为,所以该模型体积为,其质量为【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公
15、式求解16、【解析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、答案见解析【解析】由题意首先求得n的值,然后结合展开式的通项公式即可确定展开式中所有有理项.【详解】由题意可得:,解得:,则展开式的通项公式为:,由于且,故当时展开式为有理项,分别为:,.【
16、点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解18、(1)17.40千元;(2)(i)14.77千元.(ii)978人.【解析】(1)求解每一组数据的组中值与频率的乘积,将结果相加即可得到对应的;(2)(i)根据的数值判断出年收入的取值范围,从而可计算出最低年收入;(ii)根据的数值判断出每个
17、农民年收入不少于千元的概率,然后根据二项分布的概率计算公式计算出“恰有个农民年收入不少于”中的最大值即可.【详解】解:(1)千元故估计50位农民的年平均收入为17.40千元;(2)由题意知(i),所以时,满足题意,即最低年收入大约为14.77千元. (ii)由,每个农民的年收入不少于12.14千元的事件的概率为0.9773,记1000个农民的年收入不少于12.14千元的人数为,则,其中,于是恰好有k个农民的年收入不少于12.14千元的事件概率为, 从而由得,而, 所以,当时,当时,由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978人.【点睛】本题考查频率分布
18、直方图、正态分布、二项分布概率计算,属于综合题型,对于分析和数字计算的能力要求较高,难度较难.判断独立重复试验中概率的最值,可通过作商的方法进行判断.19、()()【解析】(1)利用周期公式求出,求出相位的范围,利用正弦函数的值域求解函数f(x)的值域;(2)求出A,利用余弦定理求出bc,然后求解三角形的面积【详解】解:(1)的最小正周期是,得,当时,所以,此时的值域为(2)因为,所以,的面积【点睛】本题考查三角函数的性质以及三角形的解法,余弦定理的应用,考查计算能力20、 (1)见解析;(2)见解析.【解析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2
19、)由题意可知,高度在80,90) 内的株数为5,高度在90,100内的株数为2,共7株.抽取的3株中高度在80,90)内的株数的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.详解:(1)由题意可知,样本容量,. (2)由题意可知,高度在80,90)内的株数为5,高度在90,100内的株数为2,共7株.抽取的3株中高度在80,90)内的株数的可能取值为1,2,3,则, ,. 123 故. 点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想.21、(1)证明见解析;(2);(3).【解析】(1)方法一:由重心的性质得出,再由,结合相似三角形的性质得出,再利用直线与平面平行的判定定理得出平面;方法二:以为原点,以射线为轴的正半轴,建立空间直角坐标系,利用重心的坐标公式计算出点的坐标,可计算出,可证明出,再利用直线与平面平行的判定定理得出平面;(2)计算出和,利用向量的坐标运算计算出,即可得出异面直线与所成角的余弦值;(3)由,得出,可求出的坐标,然后可计算出平面(即平面)的一个法向量和平面的一个法向量,由题意得出,结合空间向量数量积的坐标运算可求出实数的值.【详解】(1)方法一:如图,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职计算机应用笔试及答案
- 2025年湖南水利厅事业单位考试及答案
- 2025年山东建筑大学社招笔试及答案
- 2025年青岛理工辅导员笔试及答案
- 2025年公务员去事业编单位考试及答案
- 2025年蚌埠一年级报名面试题库及答案
- 2025年药学类事业编考试知识点及答案
- 2025年蜀山区语文面试题库答案
- 2025年大学生政务实践面试题库及答案
- 2025年黑龙江特岗生物面试题库及答案
- 智能网联汽车感知技术与应用 课件 任务3.1 视觉感知技术应用
- 9.个体工商户登记(备案)申请书
- (正式版)DB51∕T 3342-2025 《炉灶用合成液体燃料经营管理规范》
- 江南大学《食品科学与工程》考研真题及答案解析
- 工程咨询行业发展规划方案范文
- 2025年汉语桥的考试题目及答案
- 《TCSUS69-2024智慧水务技术标准》
- 1.1中国的疆域课件-八年级地理上学期湘教版-1
- 收费站消防安全线上培训课件
- 【语文】贵州省贵阳市实验小学小学二年级上册期末试卷
- 妇科单孔腹腔镜手术专家共识(2025版)解读 4
评论
0/150
提交评论