2021-2022学年浙江省嘉兴市嘉善高级中学数学高二下期末统考试题含解析_第1页
2021-2022学年浙江省嘉兴市嘉善高级中学数学高二下期末统考试题含解析_第2页
2021-2022学年浙江省嘉兴市嘉善高级中学数学高二下期末统考试题含解析_第3页
2021-2022学年浙江省嘉兴市嘉善高级中学数学高二下期末统考试题含解析_第4页
2021-2022学年浙江省嘉兴市嘉善高级中学数学高二下期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

2、目要求的。1用数学归纳法证明 ,从到,不等式左边需添加的项是( )ABCD2将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件两次掷的玩具底面图案不相同,两次掷的玩具底面图案至少出现一次小狗,则( )ABCD3下列函数为奇函数的是( )ABCD4掷两颗均匀的骰子,则点数之和为5的概率等于()ABCD5从集合0,1,2,3,4,5,6中任取两个互不相等的数,组成复数,其中虚数有( )A30个B42个C36个D35个6某单位为了解用电量(度)与气温()之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温()1813

3、10-1用电量(度)243464ABCD7已知集合,则如图中阴影部分所表示的集合为( )ABCD8正项等比数列中,存在两项使得,且,则的最小值是( )AB2CD9若实数满足约束条件,且最大值为1,则的最大值为( )ABCD10高三(1)班需要安排毕业晚会的4个音乐节目、2个舞蹈节目和l个曲艺节目的演出顺序要求两个舞蹈节目不连排,则不同排法的种数是( )A800B5400C4320D360011设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为( )ABCD12设x,y,z,则x,y,z的大小关系是()AxyzBzxyCyzxDxzy二、填空题:本题

4、共4小题,每小题5分,共20分。13在的展开式中的系数与常数项相等,则正数_.14在极坐标系中,两点间的距离_.15设函数的定义域为,若对于任意,当时,恒有,则称点为函数图象的对称中心.研究函数的某一个对称中心,并利用对称中心的上述定义,可得到的值为_.16展开二项式,其常数项为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面是直角梯形,且,(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值18(12分)某水产养殖基地要将一批海鲜用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由水产养殖基地承担若水产养

5、殖基地恰能在约定日期(月日)将海鲜送达,则销售商一次性支付给水产养殖基地万元;若在约定日期前送到,每提前一天销售商将多支付给水产养殖基地万元;若在约定日期后送到,每迟到一天销售商将少支付给水产养殖基地万元为保证海鲜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送海鲜,已知下表内的信息: 统计信息汽车 行驶路线不堵车的情况下到达城市乙所需时间(天)堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路公路(注:毛利润销售商支付给水产养殖基地的费用运费)()记汽车走公路时水产养殖基地获得的毛利润为(单位:万元),求的分布列和数学期望()假设你是水产养殖基地的决策者,你选

6、择哪条公路运送海鲜有可能让水产养殖基地获得的毛利润更多?19(12分)如图,多面体,平面平面,是的中点,是上的点.()若平面,证明:是的中点;()若,求二面角的平面角的余弦值.20(12分)已知正四棱锥中,底面是边长为2的正方形,高为,为线段的中点,为线段的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.21(12分)已知函数g(x)=(x+1)()求g(x)的单调区间;()设f(x)=xlnx-1e22(10分)已知数列的前项和,且()(1)若数列是等比数列,求的值;(2)求数列的通项公式。参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项

7、是符合题目要求的。1、B【解析】分析:分析,时,左边起始项与终止项,比较差距,得结果.详解:时,左边为,时,左边为,所以左边需添加的项是 ,选B.点睛:研究到项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.2、C【解析】利用条件概率公式得到答案.【详解】 故答案选C【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.3、A【解析】试题分析:由题意得,令,则,所以函数为奇函数,故选A考点:函数奇偶性的判定4、B【解析】试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B考

8、点:概率问题5、C【解析】解:a,b互不相等且为虚数,所有b只能从1,2,3,4,5,6中选一个有6种,a从剩余的6个选一个有6种,根据分步计数原理知虚数有66=36(个)故选C6、C【解析】由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【详解】由表格可知,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【点睛】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.7、D【解析】由图象可知阴影部分对应的集合为,然后根据集合的基本运算求解即可.【详解】由Venn图可知阴影部分对应的集合为,或,即 ,故选D.【点睛】本题主要考查集合的计

9、算,利用图象确定集合关系是解题的关键,考查分析问题和解决问题的能力,属于基础题.8、A【解析】试题分析:由得解得,再由得,所以,所以.考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元,在求解过程中,先对具体的数值条件进行化简,可求出,由此化简第一个条件,可得到;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求.9、A【解析】首先画出可行域,根据目标函数的几何意义得到,再利用基本不等式的性质即可得到的最大值.【详解】由题知不等式组表示的可行域如下图所示:目

10、标函数转化为,由图易得,直线在时,轴截距最大.所以.因为,即,当且仅当,即,时,取“”.故选:A【点睛】本题主要考查基本不等式求最值问题,同时考查了线性规划,属于中档题.10、D【解析】先排4个音乐节目和1个曲艺节目共有种排法,再从5个节目的6隔空插入两个不同的舞蹈节目有种排法,共有种排法,故选D11、A【解析】分析:利用椭圆定义的周长为,结合三点共线时,的最小值为,再利用对称性,可得椭圆的离心率.详解:的周长为,故选:A点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2a

11、2c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)12、D【解析】先对y,z分子有理化,比较它们的大小,再比较x,z的大小得解.【详解】y,z,0,zy.xz0,xz.xzy.故答案为D【点睛】(1)本题主要考查比较法比较大小,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 比差的一般步骤是:作差变形(配方、因式分解、通分等)与零比下结论;比商的一般步骤是:作商变形(配方、因式分解、通分等)与1比下结论.如果两个数都是正数,一般用比商,其它一般用比差.二、填空题:本题共4小题,每小题5分,共20分。1

12、3、【解析】根据二项展开式的通项公式,求出展开式中的系数、展开式中的常数项,再根据它们相等,求出的值.【详解】解:因为的展开式的通项公式为,令,求得,故展开式中的系数为.令,求得,故展开式中的系数为,所以,因为为正数,所以.故答案为:.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14、6【解析】求出的大小,得出A,O,B三点共线,即可求解.【详解】设极点为O,由题意可知即A,O,B三点在一条直线上所以【点睛】本题主要考查了极坐标的性质,要清楚极坐标 的含义,属于基础题.15、.【解析】分析:根据题意知函数f(x)图象的对称中心坐标为(1,1),即x

13、1+x2=2时,总有f(x1)+f(x2)=2,再利用倒序相加,即可得到结果详解:解:函数,f(1)231,当x1+x22时,f(x1)+f(x2)2x1+2x2+3cos(x1)+3cos(x2)622+062,f(x)的对称中心为(1,1),f()+f()+f()+f()+f()2(2017)11故答案为1点睛:这个题目考查了函数的对称性,一般 函数的对称轴为a, 函数的对称中心为(a,0);16、【解析】利用二项展开式通项,令的指数为零,求出参数的值,再代入通项可得出二项式展开式的常数项.【详解】二项式展开式的通项为,令,得.所以,二项式展开式的常数项为,故答案为:.【点睛】本题考查二项

14、展开式中常数项的计算,解题时要充分利用二项式展开式通项,利用的指数来求解,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)推导出PAAD,PAAB,由此能证明PA平面ABCD(2)以A为原点,AB,AD,AP为x,y,z轴的正方向建立空间直角坐标系,利用向量法能求出平面PBC与平面PAD所成锐二面角的余弦值【详解】(1)因为,所以,即.同理可得. 因为.所以平面. (2)由题意可知,两两垂直,故以A为原点,分别为轴的正方向建立如图所示的空间直角坐标系,则,所以. 设平面的法向量为,则,不妨取则易得平面,所

15、以平面的一个法向量为,记平面与平面所成锐二面角为,则故平面与平面所成锐二面角的余弦值为.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题18、()见解析,万元;()走公路可让水产养殖基地获得更多利润【解析】试题分析:()根据题意得到不堵车时万元,堵车时万元,结合题目中给出的概率得到随机变量的分布列,求得万元。()设设走公路利润为,同()中的方法可得到随机变量的分布列,求得万元,故应选择走公路可让水产养殖基地获得更多利润。试题解析:(I)由题意知,不堵车时万元,堵车时万元。 随机变量的分布列为 万元(II)设走

16、公路利润为,由题意得,不堵车时万元,万元, 随机变量的分布列为: 万元, 走公路可让水产养殖基地获得更多利润19、()详见解析;().【解析】()利用线面平行的性质定理,可以证明出,利用平行公理可以证明出,由中位线的性质可以证明出N是DP的中点;()方法1:在平面ABCD中作于垂足G,过G作于H,连接AH,利用面面垂直和线面垂直,可以证明出为二面角的平面角,在直角三角形中,利用锐角三角函数,可以求出二面角的平面角的余弦值;方法2:由平面平面PBC,可以得到平面PBC,而即,于是可建立如图空间直角坐标系(C为原点),利用空间向量的数量积,可以求出二面角的平面角的余弦值.【详解】(I)设平面平面,

17、因为平面PBC,平面ADP,所以,又因为,所以平面PBC,所以,所以,又因为M是AP的中点,所以N是DP的中点.(II)方法1:在平面ABCD中作于垂足G,过G作于H,连接AH(如图),因为平面平面PBC,所以平面PBC,所以平面PBC,,所以平面,所以为二面角的平面角,易知,又,所以在中,易知,所以.(II)方法2:因为平面平面PBC,所以平面PBC,而即,于是可建立如图空间直角坐标系(C为原点), 得,所有, 设平面APB的法向量为,则,不妨取,得, 可取平面PBC的法向量为,所求二面角的平面角为,则.【点睛】本题考查了线线平行的证明,考查了线面平行的判定定理和性质定理,考查了面面垂直的性

18、质定理和线面垂直的判定定理,考查了利用空间向量数量积求二面角的余弦值问题问题.20、(1)见证明;(2)【解析】(1)要证明平面,利用中位线可先证明即可;(2)找出直线与平面所成角为,利用正弦定理即可得到所成角的正弦值.【详解】解:(1)证明:在四棱锥中,连结交于点,连结,因为在中,为的中点,为的中点,所以为的中位线,得, 又因为平面,平面,所以平面 (2)设,由题意得,因为为的中点,所以,故平面 所以直线在平面内的射影为直线,为直线与平面所成的角, 又因为,所以由条件可得,所以在中,所以所以,故直线与平面所成角的正弦值为【点睛】本题主要考查线面平行的判定,线面所成角的相关计算,意在考查学生的转化能力,分析能力及计算能力,难度中等.21、(1)g(x)在(0,+)上单调递增(2)见解析【解析】()求出函数的导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论