




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、生物测定的统计基础及试验设计 生物测定的统计基础及试验设计 对试验数据进行分析, 指导试验的设计。只有在生物统计理论指导下制定的试验方案, 才能消耗最少的人力、物力和时间, 获得最多有用的数据。在应用生物统计工具对试验结果分析时, 我们必须结合专业知识, 选用适当的模型来分析, 在不了解生物现象的情况下, 机械地套用有可能得出错误的结论。对试验数据进行分析, 概率分布 概率分布 反应-剂量对数的概率分布曲线G = 1/(2) e*(-(x-)2/22) 反应-剂量对数的概率分布曲线G = 1/(2) e*(:为中数或均数, 是分布的中心, 决定了曲线在横坐标上的位置,在概率分布曲线中, 它表示
2、有效中量(median effective dose, ED50)的对数值 2: 方差, 它代表了分布的离散度, 2大, 分布曲线低而宽, 2小, 分布曲线高而窄。低而宽的反应-剂量分布曲线表明生物群体中个体之间对药剂的忍受能力差异大, 高而窄的曲线则表明生物群体中个体之间对药剂的忍受能力差异小。:为中数或均数, 是分布的中心, 决定了曲线在横坐标上的位试验的精密度试验误差experimental error 一个试验的试验误差大小说明了该试验的精密程度如何。试验的精密度(precision)是表示试验结果的可重复性。 试验误差可能由供试生物个体间的差异操作上的不一致造成的, 由一些未被试验人
3、员所察觉的随机误差所引起的。除了选用一致的生物个体作试验材料、保持试验条件的稳定、规范试验操作可减少试验误差外, 选择适当的试验设计也可减少试验误差。 试验的精密度试验误差experimental error 精密度S2(y)的表示方法S2(y) = S2/n其中,S2 (y) 表示处理平均数的方差,S2表示样本方差,n表示观察值的个数。S2 试验设计和试验材料差异N 试验单元的大小和数量精密度S2(y)的表示方法S2(y) = S2/n提高试验的精密度途径减小S2 ,即是降低样本的方差选择适合的试验设计差异较小的试验材料增加n,即是增加试验单元(experimental unit)大小和数量
4、提高试验的精密度途径试验单元(experimental unit)某一处理在某一重复中的试验材料的总和 一盆种一株植物一盆种十株植物 一个培养皿中装十粒种子一个培养皿中装一百粒种子在不同的试验单元间存在着固有的差异在同一试验单元中的不同个体的表现趋于一致不能把试验单元中的不同个体当成重复试验单元(experimental unit)某一处理在某一试验设计 无重复的试验 扩展试验设计(augmented design)单因子试验多因子试验试验设计 无重复的试验 剂量反应曲线及其模型 分为质反应(quantal response)量反应(quantitative response) 剂量反应曲线及
5、其模型 分为质反应(quantal resp质反应曲线 When =1, =0 zip = 1/(22)exp( -1/2 Z2 )dz - xip = 1/(22)exp( -1/2 (x - )2 /2)dx - 质反应曲线 直线化变换 Probit tranformation Z = 1/ (x - ) Y = Z + 5 = 1/ (x - ) + 5 = - 1/ + 5 + 1/ x 在标准正态偏离上加5是为了使所有的机率值为正数。因为, 在反应率p等于50%, Z为0, 反应率小于50%时, Z为负值。如当反应率等于25.87%, Z为-1; 反应率等于2.28%时, Z为-2.
6、 将Z加上5后, 在任何反应率下, 机率值均为正数 直线化变换 Probit tranformationDose response curveDose response curveDose-response modelDose-response model模型的检验模型的检验直线化变换移项得(D - C)/(y - C) - 1 = (x/x0) b两边同时取对数得log(D - y)/(y-C) = b(logx - logx0) 令v = log(D - y)/(y-C), 则v = b(logx - logx0) (2.12)直线化变换移项得Herbicide BioassayHerbi
7、cide BioassayRelative potencyThe relative potency (RP) of Herbicide A with respect to Herbicide B is defined as: RP (A/B) = ED50(compound )/ED50(compoud B)Relative potencyThe relative pParallelQuantal response Y1 = a1 + b1X1 Y2 = a1 + b2X2doseresponseParallelQuantal response dost test whether the tw
8、o line are parallel or not If not significant, then b1 = b2 and two lines are parallel t test whether the two line arPooled residual mean square (S2p) = (n1 - 2)S2b1 + (n2 - 2) S2b2/(n1 + n2 - 4) Where: S2b1is residual mean square for the 1st set of data ; S2b2 is residual mean square for the 2nd se
9、t of data.Pooled residual mean square (S Combined slope (bc): Combined slope (bc): Quantitative response (four-parameter model) Quantitative response (four-pa生物测定的统计基础及试验设计课件F test First, suppose b1 = b2, ED501 = ED502, and run the model IThen suppose b1 b2, ED501= ED502, and run the model II (SSII
10、- SSI)/(dfII - dfI)F = SSI/dfI where SSII is error sum of square of Model II; SSI is error sum of square of Model I If not significant, then b1 = b2 and two curves are parallel. F test First, suppose b1 = b2,Parallel curves:Two compounds having the same action mode;Different formulations of a compou
11、nd;One compound with different adjuvants Parallel curves:Non-parallelSlope (b) - not constant for tested compounds.Compare relative potency of two compounds effectively only under a certain equivalent effective dose.Non-parallelVertical vs horizontal assessmentsVertical assessment Compare plant resp
12、onses at preset doses.Horizontal assessment Compare the doses of two or more compounds that produce a similar plant response.Vertical vs horizontal assessmCautions with the parallel-line dose-response theorya. Not parallel in field conditionsb. Work less well with herbicides having complex or multip
13、le modes of action.c. Maybe work less well with different plant species.d. Maybe doesnt work with different growth stages.Cautions with the parallel-linScreening proceduresa. Primary screenb. Secondary screenc. Field screen and physiological and biochemical selectivity studiesd. Advanced selectivity
14、 screene. Field evaluationScreening proceduresa. PrimarExpressing selectivitya. Vertical assessmentb. Selectivity indices (SI) SI = ED50 (species A) / ED50 (species B) SI = ED10 (crop) / ED90 (weed) SI 2 Good selectivitySI 1- 2 Marginal selectivity SI 1 Non SelectivityExpressing selectivitya. VertBe
15、 careful when using the criteria 1. ED10 may significantly reduce crop yields.2. The limitations of bioassay in the prediction of field responsea. Temperatureb. Day length, light quality, irradiancec. Wind effectsd. Plant growth stagee. Soil conditions3. Overlap of sprayed areas 4. Apply higher dose
16、 than recommended dose Be careful when using the critNo-observable-effect level (NOEL) and No-effect level (NEL) Determination of NOEL a. Multiple comparison testEffect of expt. designMore replications, more precision.Disadvantage: Different responses Different slopes b. Dose-response relationshi No
17、-observable-effect level (NOProblems in determining the NOELa. Stimulationb. Effect of expt. design and response variablec. Duration of exposureProblems in determining the NOParameters used in herbicide bioassayBiomass including fresh weight and dry weightMortalityPlant heightPhysiological parameter
18、sParameters used in herbicide bINTERACTION BETWEEN HERBICIDESResponse Factor A at level 1 Factor A at level 1 Factor B INTERACTION BETWEEN HERBICIDESINTERACTION BETWEEN HERBICIDESResponse Factor A at level 1 Factor A at level 1 Factor B INTERACTION BETWEEN HERBICIDESHerbicide mixturesReasons for usi
19、ng herbicide mixtures:Widen the spectrum of weeds controlledReduce costs of weed controlReduce herbicide useReduce number of sprayingsPrevent/overcome resistanceHerbicide mixturesReasons for Herbicide mixturesAdditivityThe performance of a mixture is as predicted by a reference modelAntagonismThe pe
20、rformance of a mixture is poorer than predicted by a reference modelSynergismThe performance of a mixture is better than predicted by a reference model Herbicide mixturesAdditivityAntagonismReduced uptake and/or translocation of a herbicide or an increased metabolism of a herbicide (biochemical anta
21、gonism)PS II inhibitors + glyphosatedinitroanilines + PS II inhibitors”fops” + auxin herbicides difenzoquat/flamprop-M-isopropyl + auxin herbicidesPreventing binding of active ingredient at the site of action (competitive antagonism)SafenersActive and inactive isomers of the herbicideAntagonismReduc
22、ed uptake and/oAntagonismOpposite physiological effects (physiological antagonism)difenzoquat/flamprop-M-isopropyl + phenoxy herbicidesChemical reaction in the spray solution (chemical antagonism)glyphosate + cationsparaquat + MCPAAntagonismOpposite physiologicSynergismIncreased uptake and/or transl
23、ocation of a herbicideadjuvantsdesmedipham + ethofumesategrowth regulators + glyphosate/dicambaReduced metabolism of a herbicideinsekticides + herbicidesSynergismIncreased uptake and/Herbicide mixturesThree possible scenariosNone of the compounds are active applied alone but applied in mixture they
24、exert activity (coalitive action)Herbicide mixturesThree possibHerbicide mixturesThree possible scenariosNone of the compounds are active applied alone but applied in mixture they exert activity (coalitive action)One compound is active while the other is inactive (herbicide+adjuvant, herbicide+fungi
25、cide/insecticide/ growth regulator)Two compound are active (herbicide+herbicide)Herbicide mixturesThree possibAdjuvantsAdjuvantsAdjuvantsAdjuvantsDose response curvesDose response curvesAdjuvantsFluazifop-bytyl + various adjuvantsSun Spray Plus:R=1.000.1% Sandovit:R=1.410.3% SandovitR=1.791% Atplus
26、221R=1.843% AtplusR=2.34AdjuvantsFluazifop-bytyl + varHerbicide mixtures Herbicide mixtures Herbicide mixturesHerbicide mixturesReference modelsEffect multiplication also called Multiplikative Survival Model (MSM)Concentration addition also called Additive Dose Model (ADM)Reference modelsEffect mult
27、iplMultiplicative Survival ModelQA,B = QA x QBQ is a proportion of the untreated control,i.e. O = 100% control and 1 = no controlIf P is % effect (from 0 to 1) then(1 - PA,B) = (1 - PA) x (1 - PB) orPA,B = PA + PB - PA x PB Multiplicative Survival ModelQMultiplicative Survival ModelExample:1 kg/ha H
28、erbicide A: 75% effect1 kg/ha Herbicide B: 80% effectExpected effect of a mixture containing 1 kg/ha of each herbicide according to MSM:P =0.75 + 0.80 - 0.75 x 0.80P =0.95 i.e. 95% effect Multiplicative Survival ModelEMultiplicative Survival ModelMSM assumes independent action of the herbicides, i.e
29、. the herbicides exert their action independently of each other (=sequential) which seems to be an unrealistic assumption for most herbicide mixtures. MSM has traditionally been considered to be the correct reference model for mixtures of herbicides with different modes of action.Multiplicative Surv
30、ival ModelMAdditive Dose ModelAt a given response level ADM can be expressed as:zA/ZA + zB/ZB = 1where ZA and ZB are the doses of herbicides A and Bapplied separately and zA and zB are the doses of theherbicides in a mixture consisting of zA + zB. The relative potency between herbicides A and B is:R
31、 = ZA/ZB The relative potency corresponds to the exchange ratebetween currencies. Additive Dose ModelAt a given Additive Dose ModelExample:ED50 of Herbicide A: 4 kg/haED50 of Herbicide B: 2 kg/haR = 4/2 = 2 i.e. Herbicide B is twice as active as Herbicide AAdditive Dose ModelExample:Additive Dose Mo
32、delAdditive Dose ModelAdditive Dose ModelED50 or EDxED50 or EDxAdditive Dose ModelED50 or EDxAdditive Dose ModelAdditive Dose ModelAdditive Dose ModelExample:Herbicide A: 4 kg/haHerbicide B: 2 kg/haMixture 1 (75% A : 25% B): 3.2 kg/ha2.4 kg/ha Herbicide A + 0.8 kg/ha Herbicide B0.6 Herbicide A + 0.4
33、 Herbicide BMixture 2 (50% A : 50% B): 2.7 kg/ha1.35 kg/ha Herbicide A + 1.35 kg/ha Herbicide B0.33 Herbicide A + 0.67 Herbicide BMixture 3 (25% A : 75% B): 2.3 kg/ha0.58 kg/ha Herbicide A + 1.72 kg/ha Herbicide B0.14 Herbicide A + 0.86 Herbicide BAdditive Dose ModelExample:Additive Dose ModelAdditi
34、ve Dose ModelAdditive Dose ModelExample:Herbicide A: 4 kg/haHerbicide B: 2 kg/haMixture 1 (75% A : 25% B): 4.4 kg/ha3.3 kg/ha Herbicide A + 1.1 kg/ha Herbicide B0.83 Herbicide A + 0.55 Herbicide BMixture 2 (50% A : 50% B): 3.8 kg/ha1.9 kg/ha Herbicide A + 1.9 kg/ha Herbicide B0.48 Herbicide A + 0.95
35、 Herbicide BMixture 3 (25% A : 75% B): 3.6 kg/ha0.9 kg/ha Herbicide A + 2.7 kg/ha Herbicide B0.23 Herbicide A + 1.35 Herbicide BAdditive Dose ModelExample:Additive Dose ModelAdditive Dose ModelAdditive Dose ModelExample:Herbicide A: 4 kg/haHerbicide B: 2 kg/haMixture 1 (75% A : 25% B): 2.4 kg/ha1.8
36、kg/ha Herbicide A + 0.6 kg/ha Herbicide B0.45 Herbicide A + 0.3 Herbicide BMixture 2 (50% A : 50% B): 2.0 kg/ha1.0 kg/ha Herbicide A + 1.0 kg/ha Herbicide B0.25 Herbicide A + 0.50 Herbicide BMixture 3 (25% A : 75% B): 1.6 kg/ha0.4 kg/ha Herbicide A + 1.2 kg/ha Herbicide B0.1 Herbicide A + 0.6 Herbicide BAdditive Dose Mo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施设备转让合同协议
- 购青贮合同协议
- 解除委托拍卖合同协议
- 贷款机合同协议
- 设计合同补充协议书格式
- 设计制作类合同协议
- 购销产品合同协议书范本
- 购买改装件喷漆合同协议
- 2025年大学物理考试创新考点试题及答案
- 广东省广雅中学2024-2025学年高一下学期期中考试英语试题(原卷版+解析版)
- 《建筑工程施工现场安全管理的问题与完善对策研究》9200字(论文)
- 2024广西能汇投资集团有限公司面向社会公开招聘79人笔试核心备考题库及答案解析
- 《前列腺癌筛查及治疗的临床研究进展》
- 躯体形式障碍心理治疗
- DB11T 494.7-2013 人力资源服务规范 第7部分:素质测评服务
- 物管物业交接验收明细表格(全)模板
- 11.5 歌曲《卖报歌》课件(14张)
- 职业病防护设施与个体防护用品的使用和维护
- 小学英语语法专题训练:名词所有格(含答案)
- 不宁腿综合征病例分析
- AECOPD合并呼吸衰竭护理查房
评论
0/150
提交评论