七年级的数学教案怎么写_第1页
七年级的数学教案怎么写_第2页
七年级的数学教案怎么写_第3页
七年级的数学教案怎么写_第4页
七年级的数学教案怎么写_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级的数学教案怎么写 数学课堂教学中,老师可以引导学生大胆猜想,促进学生深度思考数学问题,深化对所学知识的理解,这样很好地激活了学生的创新思维,提升了学生的学习能力。今天在这给大家整理了一些七班级的数学教案,我们一起来看看吧! 七班级的数学教案1 一.教学目标 (1) 使学生进一步理解并掌握判定两条直线平行的方法; (2) 了解简单的逻辑推理过程. 二.教学重点与难点 重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 三.教学过程 复习提问: 1.判定两条直线平行的方法有哪些? 2.如图(1) (1) 如果1=4,根据_,可得ABCD; (2) 如果1=2,根据_,可得ABCD

2、; (3) 如果1+3=1800,根据_,可得ABCD . 3.如图(2) (1) 如果1=D,那么_; (2) 如果1=B,那么_; (3) 如果A+B=1800,那么_; (4) 如果A+D=1800,那么_; 新课: 例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法? 答:这两条直线平行. 如图所示 理由如下: ba,ca 1=2=900(垂直定义) bc(同位角相等,两直线平行) 思考: 这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法? 例2 如图所

3、示,1=2,BAC=200,ACF=800. (1) 求2的度数; (2) FC与AD平行吗?为什么? 巩固练习 1. 教科书19页练习 2. 如图所示,如果1=470,2=1330,D=470,那么BC与DE平行吗?AB与CD平行吗? 3. 如图所示,已知D=A,B=FCB,试问ED与CF平行吗? 4. 如图,1=2,2=3,3+4=1800,找出图中互相平行的直线. 作业:教科书19页习题5.2第7、8题 七班级的数学教案2 数轴 教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系; 2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数; 3,

4、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。 教学难点数轴的概念和用数轴上的点表示有理数 知识重点 教学过程(师生活动)设计理念 设置情境 引入课题老师通过实例、课件演示得到温度计读数. 问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度? (多媒体出示3幅图,三个温度分别为零上、零度和零下) 问题2:在一条东西向的公路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境. (小组讨论,沟通合作,动手操作)创设问题情境,激发学生的学习热

5、情,发现生活中的数学点表示数的感性认识。 合作沟通 探究新知老师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗? 让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件? 从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。 从游戏中学数学做游戏:老师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对

6、应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解。 寻找规律 归纳结论问题3: 1,你能举出一些在现实生活中用直线表示数的实际例子吗? 2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗? 3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律? 4,每个数到原点的距离是多少?由此你会发现了什么规律? (小组讨论,沟通归纳) 归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,老师可结合教科书给学生适当指导。 巩固练习 教科书第12页练习 小结与

7、作业 课堂小结请学生总结: 1,数轴的三个要素; 2,数轴的作以及数与点的转化方法。 本课作业1,必做题:教科书第18页习题1.2第2题 2,选做题:老师自行安排 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培育学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。 2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。 3,注意从学生的知识阅历出发,充分

8、发挥学生的主体意识,让学生主动参加学习活,并引导学生在课堂上感悟知识的生成,进展与变化,培育学生自主探索的学习方法。 七班级的数学教案3 有理数的大小 【学习目标】 1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动阅历. 2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较. 【学习重点】 利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小. 【学习难点】 两个负数大小的比较. 行为提示:创景设疑,帮助学生知道本节课学什么. 行为提示:教会学生看书,自学时对于书中的问题一定要仔细探究,书写答案. 教会学生落实重点. 情景导入生成问题 旧知回顾: 1.什么是绝对值?

9、 答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值. 2.正数、负数、0的绝对值分别是什么? 答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 自学互研生成能力 知识模块一用数轴比较有理数的大小 阅读教材P14P15的内容,回答下列问题: 问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大? 答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数. 方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大. 学习笔记: 行为提示:教会学生怎么沟通.先对学,再群学.充分在小组内展示自己

10、,分析答案,提出疑惑,共同解决(可按结对子学帮扶学组内群学来开展).在群学后期老师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是(A) A.abcB.acb C.bca D.cba 仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是(C) A.-aC.a-1-a D.a-a-1 仿例2:把下列各数在数轴上表示出来,并用“”连接各数. -1.5,-0.5,-3.5,-5. 解:将这些数在数轴上表示出来,如图: 从数轴上可看出:-5-3.5-1.5-0.5. 知识模块二用法则比较有理数的

11、大小 阅读教材P15的内容,回答下列问题: 问题:两个负数怎样比较大小? 答:可在数轴上比较,也可根据“两个负数比较大小,绝对值大的反而小”来比较. 典例:比较大小: (1)-2.11;(2)-3.2-4.3; (3)-1213; (4)-140. 仿例1:比较-12、-13、14的大小结果正确的是(A) A.-12-1314B.-1214-13 C.14-13-12 D.-13-1214 仿例2:比较下列各对数的大小: (1)-(-3)与|-2|; 解:-(-3)=3,|-2|=2, -(-3)|-2|;(2)-(-6)与|-6|. 解:-(-6)=6,|-6|=6, -(-6)=|-6|.

12、 变例:整数x满足|x|3,则x=-2、-1、0、1、2,负整数x满足3|x|6,则x=-4、-5、-6. 沟通展示生成新知 1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过沟通“生成新知”. 知识模块一用数轴比较有理数的大小 知识模块二用法则比较有理数的大小 检测反馈达成目标 【当堂检测】见所赠光盘和学生用书 【课后检测】见学生用书 课后反思查漏补缺 1.收获:_ 2.困惑:_ 七班级的数学教案4 学习目标 1. 理解有

13、序数对的应用意义,了解平面上确定点的常用方法 2. 培育用数学的意识,激发学习爱好. 学习重点: 理解有序数对的意义和作用 学习难点: 用有序数对表示点的位置 学习过程 一.问题导入 1.一位居民打电话给供电部门:卫星路第8根电线杆的路灯坏了,维修人员很快修好了路灯同学们欣赏下面图案. 2.地质部门在某地埋下一个标志桩,上面写着北纬44.2,东经125.7。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二.概念确定 有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们

14、把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 1.在教室里,根据座位图,确定数学课代表的位置 2.教材40页练习 三.方法归类 常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。 1.如图,A点为原点(0,0),则B点记为(3,1) 2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。 例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰

15、艇来说: (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据? (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘? (3)要确定每艘敌舰的位置,各需要几个数据? 巩固练习 1. 如图是某城市市区的一部分示意图,对市政府来说: 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置? 结合实际问题归纳方法 学生尝试描述位置 2. 如图,马所处的位置为(2,3). (1) 你能表示出象的位置吗? (2) 写出马的下一步可以到达的位置。 小结 1. 为什么要用有序数对表示点的位置,没有顺序可以吗? 2. 几种常用的表示

16、点位置的方法. 作业 必做题:教科书44页:1题 七班级的数学教案5 学习目标: 1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。 2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。 3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。 4、体验不等式在实际问题中的作用,感受数学的应用价值。 学习重点:一元一次不等式组的解法 学习难点:一元一次不等式组解集的确定。 一、学前准备 【回顾】 1.解不等式 ,并把解集在数轴上表示出来。 【预习】 1、 仔细阅读教材34-35页内容 2、

17、_ _ 叫做一元一次不等式组。_ _叫做一元一次不等式组的解集。叫做解不等式组。 3、求下列两个不等式的解集,并在同一条数轴上表示出来 二、探究活动 【例题分析】 例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么? 例2. (问题2)题中的相等关系是什么?不等关系又是什么? 例3. 解不等式组 【小结】 不等式组解集口诀 “同大取大,同小取小,大小小大中间找,大大小小解不了” 一元一次不等式组解集四种类型如下表: 不等式组(ab) p= 记忆口诀 (1)xaxb xb 同大取大 (2)xaxb p= xa p= 同小取小 a p= 同小取小(3)xaxb p= a p= 同小取小axb p= 大小取中 a p= 同小取小(4)xb a p= 同小取小 无解 大大小小解不了 【课堂检测】 1、不等式组 的解集是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论