




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线性代数及其应用线性代数及其应用代数由费马和笛卡尔的工作产生于17世纪关孝和或莱布尼兹引入行列式,雅可比和范德蒙发展詹姆斯或凯莱引入矩阵克莱姆,高斯,若当引入方程组我国九章算术中有一章方程历史背景1859 (清朝)李善兰翻译成“代数学”代数由费马和笛卡尔的工作产生于17世纪关孝和或莱布尼兹引入行 线性代数课程在高等工业学校的教学计划中是一门重要的基础理论课,也是考研究生的必考课程,尤其在计算机高速发展的今天,更显示出其重要性和应用性。 线性代数课程在高等工业矩 阵线性方程组行列式向量组一一对应一 一 对 应特征问题与二次型线性方程组求解为核心矩阵运算为主线矩 阵线性方程组行列式向量组一一对应一
2、 一 对 应特征问题核心核心第一节 矩阵第一章 矩阵第一节 矩阵第一章 矩阵1. 线性方程组的解取决于系数常数项一、矩阵概念的引入1. 线性方程组的解取决于系数常数项一、矩阵概念的引入对线性方程组的研究可转化为对这张表的研究.线性方程组的系数与常数项按原位置可排为对线性方程组的线性方程组的系数与常数项按原位置可排为线性变换对应这是一个以原点为中心旋转 角的旋转变换.线性变换对应这是一个以原点为中心二、矩阵的定义 由 个数排成的 行 列的元数表称为 维矩阵.简称 矩阵.记作二、矩阵的定义 由 个数称为 维矩阵.简记为元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.简记为元素是实数的矩阵称
3、为实矩阵,元素是复数的矩阵称为复矩阵线性代数及其应用课件1例如是一个 实矩阵,是一个 复矩阵,是一个 矩阵,是一个 矩阵,是一个 矩阵.例如是一个 实矩阵,是一个 例如是一个3 阶方阵.几种特殊矩阵(2)只有一行元素的矩阵称为行矩阵(或行向量).方阵.也可记作主对角线副(反)对角线例如是一个3 阶方阵.几种特殊矩阵(2)只有一行元素的矩阵称只有一列元素的矩阵称为列矩阵(或列向量).全为零的方阵称为上三角矩阵。只有一列元素的矩阵称为列矩阵(或列向量).全为零的方阵称为上 称为对角矩阵(或对角阵).(4)形如 的方阵,全为零的方阵称为下三角矩阵。记作 称为对角矩阵(4)形如 (5) 数(纯)量矩阵
4、(标量矩阵)称为单位矩阵(或单位阵).有时也记作E.全为1为数量矩阵或标量阵。当 时,记作(5) 数(纯)量矩阵(标量矩阵)称为单位矩阵(或单位阵) (6)元素全为零的矩阵称为零矩阵, 零矩阵记作 或 .注意不同阶数的零矩阵是不“相等”的.例如 (6)元素全为零的矩阵称为零矩阵, 零注 2.两个矩阵 为同维矩阵,并且对应元素相等,即则称矩阵 相等,记作例如为同维矩阵. 同维矩阵与矩阵相等的概念 1.两个矩阵的行数相等,列数相等时,称为同维矩阵. 2.两个矩阵 为同维矩阵例1 设解例1 设解三、小结(1)矩阵的概念三、小结(1)矩阵的概念(2) 特殊矩阵方阵上(下)三角阵单位矩阵;对角矩阵;零矩
5、阵.行矩阵与列矩阵;(2) 特殊矩阵方阵上(下)三角阵单位矩阵;对角矩阵;零矩阵思考题思考题解答思考题思考题解答矩阵 是对角阵。 答:错.矩阵 是对角阵。 答:矩阵棣属关系:单位阵数量阵对角阵三角阵方阵矩阵。 答:对.矩阵棣属关系:数量阵对角阵三角阵方阵矩阵。 答:第二节 矩阵的运算第一章 矩阵第二节 矩阵的运算第一章 矩阵、定义一、矩阵的加法设有两个 矩阵 那末矩阵 与 的和记作 ,规定为、定义一、矩阵的加法设有两个 矩阵 说明 只有当两个矩阵是同维矩阵时,才能进行加法运算.例如说明 只有当两个矩阵是同维矩阵时,才能进例如2、 矩阵加法的运算规律2、 矩阵加法的运算规律1、定义二、数与矩阵相
6、乘1、定义二、数与矩阵相乘2、数乘矩阵的运算规律矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.(设 为 矩阵, 为数)注:2、数乘矩阵的运算规律矩阵相加与数乘矩阵合起来,统称为矩阵的线性代数及其应用课件1三、矩阵与矩阵相乘商品名代理商三、矩阵与矩阵相乘商品名代理商线性代数及其应用课件1线性代数及其应用课件1、定义并把此乘积记作设 是一个 矩阵, 是一个 矩阵,那么规定矩阵 与矩阵 的乘积是一个 矩阵 ,其中、定义并把此乘积记作设 是一个例2设例3例2设例3故解故解注意只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘.例如不存在. 而注意只有当第一个矩阵的列数等于第二个矩阵例如不
7、存在. 而、矩阵乘法的运算规律(其中 为数); 若A是 阶矩阵,则 为A的 次幂,即 并且 、矩阵乘法的运算规律(其中 为数); 线性代数及其应用课件1注意矩阵一般不满足交换律,即:例4 设则注意矩阵一般不满足交换律,即:例4 设则但也有例外,比如设则有注意矩阵乘法一般不满足消去律,亦即:但也有例外,比如设则有注意矩阵乘法一般不满足消去律,亦即:例5 计算下列乘积:解例5 计算下列乘积:解解=()解=()解例6解例6由此归纳出由此归纳出用数学归纳法证明当 时,显然成立.假设 时成立,则 时,用数学归纳法证明当 时,显然成立.假设 所以对于任意的 都有所以对于任意的 都有线性代数及其应用课件1定
8、义 把矩阵 的行换成同序数的列得到的新矩阵,叫做 的转置矩阵,记作 .例、转置矩阵四、矩阵的转置运算定义 把矩阵 的行换成同序数的列得到的例、转转置矩阵的运算性质转置矩阵的运算性质线性代数及其应用课件1例7 已知解法1例7 已知解法1解法2解法22、对称阵与反对称阵对称阵定义设 为 阶方阵,如果满足 ,即那末 称为对称阵.对称阵的元素以主对角线为对称轴对应相等。 说明2、对称阵与反对称阵对称阵定义设 为 阶方阵例8 设列矩阵 满足 证明例8 设列矩阵 满足 线性代数及其应用课件1例9 证明任一 阶矩阵 都可表示成对称阵与反对称阵之和.证明 为对称矩阵. 为反对称矩阵. 命题得证.例9 证明任一
9、 阶矩阵 都可表示成对五、小结矩阵运算加法数与矩阵相乘矩阵与矩阵相乘转置矩阵对称阵与反对称阵五、小结矩阵运算加法数与矩阵相乘矩阵与矩阵相乘转置矩阵对称阵(2)只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律,消去律.(1)只有当两个矩阵是同维矩阵时,才能进行加减,法运算.注意 (3)矩阵的数乘运算是该数乘以矩阵中每一个元素.(2)只有当第一个矩阵的列数等于第二个(1)只有当两思考题成立的充要条件是什么?思考题解答故 成立的充要条件为矩阵A、B可交换。即答思考题成立的充要条件是什么?思考题解答故 线性代数及其应用课件1思考题思考题解答答思考题思考题解答答 例
10、.已知, 求 例.已知, 线性代数及其应用课件1第三节 逆矩阵第一章 矩阵第三节 逆矩阵第一章 矩阵则矩阵 称为 的逆矩阵或逆阵.一、概念的引入在数的运算中,当数 时,有其中 为 的倒数, (或称 的逆); 在矩阵的运算中,单位阵 相当于数的乘法运算中 的1,那么,对于矩阵 ,如果存在一个矩阵 ,使得则矩阵 称为 的逆矩阵或逆阵.一、概念的引入二、逆矩阵的概念和性质 定义 对于 阶矩阵 ,如果有一个 阶矩阵 则说矩阵 是可逆的,并把矩阵 称为 的逆矩阵.使得例 设二、逆矩阵的概念和性质 定义 对于 阶矩阵 ,如说明 若 是可逆矩阵,则 的逆矩阵是唯一的.若设 和 是 的可逆矩阵,则有可得所以
11、的逆矩阵是唯一的,即说明 若 是可逆矩阵,则 的逆矩阵是唯一的.例如 设解则例如 设解则逆矩阵的运算性质逆矩阵的运算性质证明证明证明证明例1三、逆矩阵的求法例1三、逆矩阵的求法线性代数及其应用课件1例2 设解设 是 的逆矩阵,则利用待定系数法例2 设解设 又因为所以又因为所以解例3解例3线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1四、小结1、逆矩阵的概念及运算性质.2、逆矩阵的计算方法:四、小结1、逆矩阵的概念及运算性质.2、逆矩阵的计算方法:思考题思考题解答答思考题思考题解答答思考题思考题解答思考题思考题解答第四节 分块矩阵第一章 矩阵第四节 分块矩阵第一章 矩阵一、矩
12、阵的分块对于行数和列数较高的矩阵 ,为了简化运算,经常采用分块法,使大矩阵的运算化成小矩阵的运算. 具体做法是:将矩阵 用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 的子块,以子块为元素的形式上的矩阵称为分块矩阵.一、矩阵的分块对于行数和列数较高的矩阵 ,为了例即例即即即线性代数及其应用课件1二、分块矩阵的运算规则二、分块矩阵的运算规则线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1例1 设解例1 设解则则又又于是于是例2 设解例2 设解线性代数及其应用课件1例3 设例3 设例4 (性质) 设例4 (性
13、质) 设线性代数及其应用课件1三、小结 在矩阵理论的研究中,矩阵的分块是一种最基本,最重要的计算技巧与方法.(1) 加法(2) 数乘(3) 乘法 分块矩阵之间的运算分块矩阵之间与一般矩阵之间的运算性质类似三、小结 在矩阵理论的研究中,矩阵的分块是一种最基本(4) 转置(5) 分块对角阵的逆阵(4) 转置(5) 分块对角阵的逆阵思考题思考题思考题解答证思考题解答证第五节 初等变换和初等矩阵第一章 矩阵第五节 初等变换和初等矩阵第一章 矩阵引例一、初等变换的引入-方程组 的同解变换求解线性方程组我们来分析用消元法解下列方程组的过程引例一、初等变换的引入-方程组求解线性方程组我们来分线性代数及其应用
14、课件1线性代数及其应用课件1小结:1上述解方程组的方法称为Gauss消元法 2(1)交换两个方程的次序;(3)一个方程加上另一个方程的常数k倍( 与 相互替换)(以替换)(2)以不等于的常数 乘上某个方程;(以替换)小结:1上述解方程组的方法称为Gauss消元法 3上述三种变换都是可逆的由于三种变换都是可逆的,所以变换前的方程组与变换后的方程组是同解的故这三种变换是同解变换3上述三种变换都是可逆的由于三种变换都是可逆的,所以因为在上述变换过程中,仅仅只对方程组的系数和常数进行运算,未知量并未参与运算若记则对方程组的变换完全可以转换为对矩阵 (方程组(I)的增广矩阵)的变换因为在上述变换过程中,
15、仅仅只对方程组的系数和常数进行运算定义1下面三种变换称为矩阵的初等行变换:二、矩阵的初等变换定义1下面三种变换称为矩阵的初等行变换:二、矩阵的初等变换定义2 矩阵的初等列变换与初等行变换统称为初等变换 初等变换的逆变换仍为初等变换, 且变换类型相同 同理可定义矩阵的初等列变换(所用记号是把“r”换成“c”)逆变换逆变换逆变换定义2 矩阵的初等列变换与初等行变换统称为初等变换 等价关系的性质:具有上述三条性质的关系称为等价关系例如,两个线性方程组同解,就称这两个线性方程组等价等价关系的性质:具有上述三条性质的关系称为等价关系例如,两定义 由单位矩阵 经过一次初等变换得到的方阵称为初等矩阵.三种初
16、等变换对应着三种初等方阵. 矩阵的初等变换是矩阵的一种基本运算,应用广泛.三、初等矩阵的概念定义 由单位矩阵 经过一次初等变换得到的方阵称为初等矩阵线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1第 i 列第 i 列线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1 定理1 设 是一个 矩阵,对 施行一次初等行变换,相当于在 的左边乘以相应的 阶初等矩阵;对 施行一次初等列变换,相当于在 的右边乘以相应的 阶初等矩阵.初等变换初等矩阵初等逆变换初等逆矩阵 定理1 设 是一个 矩阵,对 施行一次初线性代数及其应用课件1四、初等矩阵的应用四、初等矩阵的应用特点:例如,特点:例如,线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1标准形标准形线性代数及其应用课件1线性代数及其应用课件1线性代数及其应用课件1 定理3 A为可逆方阵的充分必要条件是存在有限个初等方阵 定理3 A为可逆方阵的充分必要条件是存在有(应用一)利用初等变换求逆阵的方法:(应用一)利用初等变换求逆阵的方法: 解例 2 解例 2线性代数及其应用课件1初等行变换初等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院呼叫器采购合同范本
- 友好解除合同协议书范本
- 产销合作协议书范本合同
- 午托转让正规合同协议书
- 公考培训一对一合同协议
- 合同里可以包含保密协议
- 中介代销新楼盘合同范本
- 仓库短期租赁合同协议书
- 厂房带院子租赁合同范本
- 公开拆迁补偿协议书模板
- 孟良崮战役课件
- 幼儿园物资采购应急预案(3篇)
- 党群服务面试题目及答案
- 卫生院医疗质量管理方案
- 2025-2026秋季学年第一学期【英语】教研组工作计划:一路求索不停歇研思共进踏新程
- 2025年山东省济南中考数学试卷及标准答案
- 叉车考试模拟试题及答案完整版
- 2025-2026学年人教版(2024)初中数学七年级上册教学计划及进度表
- 第1课 鸦片战争 课件 历史统编版2024八年级上册
- 物业管理师职业技能竞赛理论知识试题题库(1000题)
- 医学检验职称评审答辩
评论
0/150
提交评论