




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、章节同步练习2022年浙教版初中数学 章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解月度测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.2、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.3、下列多项式能用公式法分解因式的是()A.
2、m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b24、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210 x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)5、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主6、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)7、下列因式
3、分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)28、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.9、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+110、下列各式变形中,是因式分解的是( )A.B.C.D.11、下列各式中,正确的因式分解是( )A.B.C.D.12、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)213、下列
4、多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.14、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.3015、已知,则 的值是( )A.B.C.45D.72二、填空题(10小题,每小题4分,共计40分)1、分解因式:9a2+b2_2、因式分解:_3、分解因式_4、分解因式:x2y6xy9y_5、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)
5、2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_6、因式分解:_7、已知,则的值等于_8、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)9、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)10、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、分解因式:(x2y)(2x3y)2(2yx)(5xy)2、分解因式(1);(2)3、分解因式:(x2+1)24x(x2+1)+4x2-参考答案-一、单选题1、C【分析】根据因式分解的各种方法逐个判断即可.【详解
6、】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.2、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.3、D【分析】
7、利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.4、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10 x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解
8、正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.5、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解
9、题的关键.6、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.7、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、
10、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.9、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故
11、本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.10、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.11、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出
12、答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.12、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意; D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,
13、掌握因式分解的定义是解题的关键.13、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).14、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部
14、分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.15、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题
15、关键.二、填空题1、 (b+3a)(b-3a)【分析】原式利用平方差公式分解即可.【详解】解:-9a2+b2= b2-9a2=(b+3a)(b-3a).故答案为:(b+3a)(b-3a)【点睛】本题考查了运用平方差公式分解因式,熟练掌握平方差公式的结构特征是解本题的关键.2、【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.3、【分析】原式提取2,再利用平方差公式分解即可.【详解】解:=2(x2-9)=2(x+3)(x-3).故答案为:2(
16、x+3)(x-3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.5、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-
17、25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-
18、2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.6、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.7、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2= a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.9、1【分析】直接利用平方差公式分解因式得出答案.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年悬浮床加氢裂化催化剂项目建议书
- 幼儿行为观察记录培训
- 护理反思日记实践体系
- 社区护理评估方法
- 经济适用房满年限上市买卖及共有权证明注销合同
- 影视行业服装道具损坏赔偿补充合同
- 医疗机构护理劳务外包保密协议书
- 能源行业市场调研与分析补充协议
- 直播带货平台与商家佣金分成协议
- 豪华私人飞机氧气舱设施租赁服务协议
- 2024年工艺美术研究报告
- 南京师范大学泰州学院《宏观经济学》2022-2023学年第一学期期末试卷
- 《民航服务与沟通学》课件-第18讲 儿童旅客
- 儿科发热护理常规
- 房地产金融不良资产处置
- 《临床药学》课件
- 检验科个人防护培训材料
- 工业自动化生产线操作手册
- 经济与社会如何用决策思维洞察生活尔雅答案
- 四川省成都市2021年中考英语真题(含答案)
- GB/T 18238.1-2024网络安全技术杂凑函数第1部分:总则
评论
0/150
提交评论