版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学下册第六章对概率的进一步认识达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同
2、的出入口进出的概率是()ABCD2、某区为了解初中生体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.93、某口袋里现有12个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验600次,其中有300次是红球,估计绿球个数为( )A8B
3、10C12D144、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )ABCD5、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于6的概率是( )ABCD6、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290
4、.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD7、从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()ABCD8、不透明布袋中装有除颜色外完全相同的红、白球,已知红、白球共有60个,同学们通过多次试验后发现摸到红色
5、球的频率稳定在左右,则袋中红球个数可能为()A30B25C20D159、如图是一个游戏转盘,连续自由转动转盘两次(如果落在分隔线上,则重新转动,直至转到其中一块区域),则两次转动指针都落在数字“”所示区域内的概率是()ABCD10、一个口袋中有红球、白球共10个,这些球除颜色外都相同将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了200次球,发现有140次摸到红球,由此估计这个口袋中红球的个数为()A3个B4个C6个D7个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色
6、外都相同小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _个2、在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有_个3、2022年春节贺岁档影片即将上映,小明、小红二人准备在四海、奇迹、断桥、狙击手四部影片中各自随机选择一部影片观看(假设两人选择每部影片的机会均等),则二人恰好选择同一部影片观看的概率为_4、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复
7、,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_5、某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是 _三、解答题(5小题,每小题10分,共计50分)1、为落实“双减”,进一步深化白云区“数学提升工程”,提升学生数学核心素养,2021年12月3日开展“双减”背景下白云区初中数学提升工程成果展示现场会,其中活动型作业展示包括以下项目:数独挑战;数学谜语;一笔画;24点;玩转魔方为了解学生最喜爱的项目,随机抽取若干名学生进行调查,将调查结果绘制成两个不完整的统计图,如图:(1)本次随机抽查
8、的学生人数为_人,补全图();(2)参加活动的学生共有500名,可估计出其中最喜爱数独挑战的学生人数为_人,图()中扇形的圆心角度数为_度;(3)计划在,四项活动中随机选取两项作为重点直播项日,请用列表或画树状图的方法,求恰好选中,这两项活动的概率2、如图,是一个智慧教育产品的展销厅的俯视示意图,小李进入展厅后,开始自由参观,每走到一个十字道口,他可能直行,也可能向左转成向右转,且这三种可能性均相同(1)求小李走进展厅的十字道口A后,向北走的概率;(2)请用树状图或表格分析,小李到达第二个十字道口后向西方向参观的概率3、小明每天骑自行车上学,都要通过安装有红、绿灯的4个十字路口假设每个路口红灯
9、和绿灯亮的时间相同(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 (请直接写出答案)4、我国新冠灭活疫苗主要来自三家生物制品公司,分别是A:科兴中维、B:北京所、C:武汉所灭活疫苗一般需要接种2针,假如一人两次接种的疫苗的生产公司随机,请你用列表或树状图的方法求出一个人两次接种的疫苗刚好是同一家公司生产的概率5、苗苗的爸爸订了一张电影票,苗苗和哥哥都想去观看,可票只有一张,读九年级的哥哥想了一个游戏方法:拿了8张扑克牌,将数字为3、4、7、9的四张给苗苗,将数字
10、为2、5、6、8的四张留给自己然后按如下的游戏规则进行确定:苗苗和哥哥从四张扑克牌中随机抽出一张,将抽出得到的两张扑克牌数字相加,如果和为偶数,则苗苗去;如果和为奇数,则哥哥去(1)苗苗的哥哥设计的游戏规则公平吗?为什么?请画出树状图或列表予以说明;(2)如果该游戏规则不公平,请你改变一下游戏方法,使得游戏规则公平;如果该游戏规则公平,请你制订一个不公平的游戏方法-参考答案-一、单选题1、D【解析】【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出
11、入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率2、A【解析】【分析】根据频数估计概率可直接进行求解【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键3、C【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解即可【详解】解:设袋中有绿
12、球x个,由题意得:,解得:,经检验,为原方程的解,故选:C【点睛】本题考查了利用频率估计概率,利用大量试验得到的频率可以估计事件的概率是解决本题的关键4、B【解析】【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率【详解】解:列表得:锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P(一次打开锁)故选:B.【点睛】本题考查列表法与树状图法求概率,注意掌握概率=所求
13、情况数与总情况数之比是解题的关键5、D【解析】【分析】画出树状图,得出所有等可能情况数及两次摸出的小球的标号之和等于6的情况数,根据概率公式即可得答案【详解】画树状图如下:共有16种等可能情况,两次摸出的小球的标号之和等于6的情况有3种,两次摸出的小球的标号之和等于6的概率为,故选:D【点睛】本题考查列表法或树状图法求概率,概率=所求情况数与总情况数之比;正确画出树状图,熟练掌握概率公式是解题关键6、C【解析】【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加
14、,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答7、B【解析】【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种,则甲被选中的概率为
15、故选:B【点睛】本题考查了树状图法求概率以及概率公式,解题的关键是画出树状图8、D【解析】【分析】根据利用频率估计概率问题可直接进行求解【详解】解:由题意得:;故选D【点睛】本题主要考查频率估计概率,熟练掌握利用频率估计概率是解题的关键9、C【解析】【分析】先把把I,II和并为一个区域,然后画出树状图列出所有等可能情况,从中找出两次都转到区域III的情况,再利用概率公式计算即可【详解】解:把I,II和并为一个区域,两次都为III的只有1种,总等可能情况共有4种,落在III区域内的概率,故选C【点睛】本题主要考查了几何概率,解题的关键在于能够根据题意把I,II合并为一个区域得到2个区域的面积相等
16、,画树状图列出等可能的所有情况,从中找出两次都转到III区域的情况是解题关键10、D【解析】【分析】估计利用频率估计概率可估计摸到红球的概率为0.7,然后根据概率公式计算这个口袋中红球的数量【详解】解:因为共摸了200次球,发现有140次摸到红球,所以估计摸到红球的概率为0.7,所以估计这个口袋中红球的数量为100.7=7(个)故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精
17、确二、填空题1、6【解析】【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数【详解】解:由题意可得,200.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数2、30【解析】【分析】设袋中红球有x个,根据题意用红球数除以白球和红球的总数等于红球的频率列出方程即可求出红球数【详解】解:设袋中红球有x个,根据题意,得:,解并检验得:x=30所以袋中红球有30个故答案为:30【点睛】本题考查了利用频率估计概率,解决本题的关键是用频率的集中趋势来估计概率,这个固定的近似值3、#0.25【解析】【分
18、析】用a表示四海,b表示奇迹,c表示断桥,d表示狙击手,列树状图求解【详解】解:用a表示四海,b表示奇迹,c表示断桥,d表示狙击手,列树状图如下:共有16种等可能的情况,其中二人恰好选择同一部影片观看的有4种,P(二人恰好选择同一部影片观看)=,故答案为:【点睛】此题考查了列举法求事件的概率,正确掌握列举法的解题方法及概率的计算公式是解题的关键4、#0.2【解析】【分析】可根据“黑球数量黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数总共摸球的次数”【详解】解:共摸球4000次,其中800次摸到黑球,从中随机摸出一个球是黑球的概率为,故答案为:【点睛】考查利用频率估
19、计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比5、【解析】【分析】先列表求解所有的等可能的结果数,再得到所选代表恰好为1名女生和1名男生的结果数,再利用概率公式进行计算即可.【详解】解:列表如下: 所以:所有的可能的结果数有种,刚好是1名女生和1名男生的结果数有8种,所以所选代表恰好为1名女生和1名男生的概率是: 故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解等可能事件的概率,掌握“画树状图或列表的方法”是解本题的关键.三、解答题1、(1)60,见解析;(2)125、90;(3)【解析】【分析】(1)由的人数除以所占百分比求出抽查的学生人数,
20、即可解决问题;(2)由该校人数乘以最喜爱“数独挑战”的人数所占的比例得出该校学生最喜爱“数独挑战”的人数,再用360乘以最喜爱“数独挑战”的人数所占的比例即可;(3)画树状图,再由概率公式求解即可【详解】解:(1)本次随机抽查的学生人数为:1830%=60(人),则喜爱玩转魔方游戏的人数为:60-15-18-9-6=12(人),补全图()如下:故答案为:60;(2)估计该校学生最喜爱“数独挑战”的人数为:500=125(人),图()中扇形的圆心角度数为:360=90,故答案为:125,90;(3)画树状图如图:共有12个等可能的结果,恰好选中“,”这两项活动的结果有2个,恰好选中“,”这两项活
21、动的概率为=【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率2、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画出树状图,共有9种等可能的结果,小李经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,由概率公式求解即可(1)小李走到十字道口A向北走的概率为;(2)画树状图如下:共有9种等可能的结果,小李经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,向西参观的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职畜牧兽医(饲料配方设计)试题及答案
- 7.1《谁先走》(教学课件)-五年级 数学上册 北师大版
- 制药厂复工安全生产培训课件
- 工程安全基本知识培训课件
- 手术AI在日间手术中的效率提升
- 医院防火巡查、检查制度
- 成分输血在产后大出血抢救中的策略
- 高管辅导指导协议
- 人工智能软件开发许可协议
- 客户联系尝试意向协议
- 妇产科护理核心制度
- 急性呼吸道梗阻
- 公司特殊贡献奖管理制度
- 小学语文课堂板书设计
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- GB/T 40565.2-2025液压传动连接快换接头第2部分:平面型
- 2025-2030中国曲氟尿苷替匹嘧啶片行业市场现状分析及竞争格局与投资发展研究报告
- GB/T 3543.11-2025农作物种子检验规程第11部分:品种质量品种真实性鉴定
- 人力资源有限公司管理制度
- 2024年高中语文选择性必修上册古诗文情境式默写(含答案)
- 部编人教版4年级上册语文期末复习(单元复习+专项复习)教学课件
评论
0/150
提交评论