城市常规火灾灭火能力定量估算_第1页
城市常规火灾灭火能力定量估算_第2页
城市常规火灾灭火能力定量估算_第3页
城市常规火灾灭火能力定量估算_第4页
城市常规火灾灭火能力定量估算_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、城市常规火灾灭火能力定量估算初探浙江省公安消防总队朱力平摘要:作者分析了影响城市灭火控制能力的若干要素,提出了灭火控制能力以主战消防车的实际出水强度(L/s)表示,通过计算实例,得出城市20min内到达火场消防车的最佳战斗组合方式以及计算出城市的灭火能力。关键词:灭火能力出水强度供水量1城市常规火灾灭火能力问题的提出一旦发生火灾,如何使人民的生命、财产损失降低到最低程度,这种保障能力究竟有多大?这对每一个城市都是需要回答的重要问题。从本质上来讲,这种能力是由城市消防基础设施建设程度与社会消防力量强弱所决定的。消防基础设施与社会消防力量所构成的能力越强大,城市消防安全保障程度就越高。在一般情况下

2、,城市火灾为常规火灾,以水克火,又是千古不变之常理,故城市灭火能力以灭火时单位时间出水量(即出水强度)的大小衡量较为适宜。众所周知,中国有一句成语叫“杯水车薪”,意即用一杯水想扑灭一车柴燃起的火是不可能的。但是如果我们用5车水去灭1车柴燃起的火则是可能的。灭火的方法有二种,一是用1车水接着1车水去灭,可能10min把火灭了。而如果用3车水同时去灭火,可能的结果是6min就灭了。这个例子告诉我们:如果有足够可靠的水源,使足够数量的消防车同时出水灭火,则灭火速度快,效果好。也就是说:当火灾发生后,消防主战车在单位时间内不断出水量越大,对火灾的控制和扑灭能力就越强;在很大程度上讲,一个城市消防部队的

3、灭火能力,就是累计主战车的出水总强度。2定量研究城市消防部队常规火灾灭火能力的意义便于发现城市消防工作中的薄弱环节由于在计算过程中直接涉及到消防站的密度,消防装备、供水能力等各方面,所以这些数据在一定条件下的综合所反映的内涵包括了,城市消防队的常规装备力量;消防站的数量和分布是否合理;城市供水管网和消火栓(主是城市灭火的主要水源)的实际状况;城市道路交通状况以及消防通讯能力等是否达到要求。这些数据在一定排列下的综合,就是城市常规火灾的综合控制能力。分析这些数据,即可发现城市消防工作的薄弱点。便于城市之间灭火能力的比较通过计算可分别得出各城市定量的灭火能力数值。据此可将相同层次的灭火能力以列表比

4、较。这样,各城市灭火能力就能非常清晰地通过表格反映出来。计算单位时间出水强度必须统一并考虑到可变因素一个城市的实际灭火能力往往受到多方面因素的影响(如:消防站布局、消防车种类、数量及功率,地下管网的分布和管径,消火栓的数量等等);有些因素还是随机变化的变量(如供水管网的压力,道路交通流量等等)。因此,要计算一个城市常规火灾的定量灭火能力,第一,必须先统一设定某些因素的概念,第二,必须略去某些特殊情况或次要因素。从对实际工作具有实际指导意义出发,应统一以下几个概念和计算方法。3.1区分水源充裕区域和缺水区域。水源充裕地区指的是城市供水管网的分布和管径符合设计要求,并在管网上设有足够的消火栓的地区

5、。可供消防车直接取水的天然水源和高层建筑的水箱(水池等),有时也可作为辅助性消防水源,但可略去不计。缺水地区是指市区内缺水最严重的地方,也就是没有设置城市供水管网,或虽有供水管网但不符合设计要求,或未设置消火栓的地区。换言之,就是火灾发生后需以运水方式解决火场供水的地区。运水距离按一般情况统一设定为2Km。城市供水管网统一以0.2Mpa为计算基准压力。保证不间断供水。指不管采取何种供水方法,都要保证火场供水不间断。以20min能够调到火场为原则,计算消防力量。发生火灾20min以内不能到达火场的力量,可略去不计。以实有消防站数量、位置为准,不能以理论保护半径计算。以火灾假设已发展到猛烈阶段为准

6、,不考虑特殊火灾和特殊情况。综上所述,我们将20min到达火场的消防主战车在单位时间内不间断出水量Q用L/s来表示城市对常规火灾的灭火能力。4计算城市灭火能力Q涉及的若干要素的选择与计算方法4.120min到达火场力量的确定4.1.1确定可供调动的消防队数。按接警后20min可能到达火场的要求,如实测城市市区一般平均车速为32.5Km/h,由于前往火场行驶路程不可能为直线,故改取消防车行驶速度为25Km/h,再考虑到减去接警出动时间1min,故途中实际行驶时间为19min,则(1)因此,以火场为圆心,以8Km为半径,在此区域范围内消防站的消防车可作为能够及时调用的有效灭火力量。用数据列出消防队

7、配备的可供调动车辆,并注明每台车的出水强度(L/s)。城市管网供水能力的确定4.2.1根据管网的管径和水压,可确定管道的水流量,城市管网的压力一般为0.1MPa0.4Mpa,且干管之间不超过500m。按常规方法计算供水能力,需要用复杂的公式或查阅水力计算表。在计算灭火力量时,管道的供水量一般可用下列经验公式估算:Q0D2V/2 (2)式中Q0-管道供水量,L/s。D-管径(按英寸inch代入算式),对于以公制mm表示管径时,则可除以25,折成英寸inch后再代入算式(1),例如K100mm,可折合为D100/254inchV-管道当量流速,m/s,其中枝状管网V1m/s,环状管网V1.5m/s

8、。(经验公式摘自灭火手册1199页)4.2.2算法举例如管径为400mm的环状管网,压力为0.2Mpa,试问其管道供水能力?管网上可停靠几台消防车?(每辆普通消防车出水强度可按10L/s15L/s计算),则:Q0=1621.5=192(L/s)(这里D400/25=16inch)可停靠消防车数量为:192/15=12.812(辆)因此,可满足12辆普通消防车用水量。灭火主战车辆的确定首先选择本区域出水量最大的消防车共X辆作为主战车。其余的消防车以能满足主战车不间断供水为前提,有可能再补充选用;如不能满足不间断供水的条件,则要相应地减少主战车数用于供水。计算时必须考虑每辆主战车有独立的供水体系。

9、若采用直径为65mm的麻质水带作为火场干线供水,其最大供水距离为16条水带,总长即320m。在一般情况下,水源离火场距离不超过1500m时,采用消防车串联供水方式比较优越;若距离超过1500m,则应选择大水罐车运水作战的方式供水。若采用直径65mm的胶里水带作双干线供水,其最大供水距离可达38条水带总长度,即760m。由于大功率水炮的出水量大,最好采用直径80mm麻质水带作双干线供水。这时供水最大的距离可达,45条水带总长度,即900m,已接近1Km。累计主战车不间断出水时单位时间内的总出水量,也就是我们所求算的一个城市对常规火灾的灭火能力。计算实例假设位于杭州市水源充裕地区的天工艺苑发生火灾

10、,试计算出20min内到达火场的消防车之最佳战斗组合方式,并计算其最大出水强度。在杭州市地图(不能使用示意图)上,以天工艺苑为圆心,以8Km为半径画一个圆。列出圆内消防站名称及装备和出水量。在8Km范围内有7个消防中队:即湖滨中队、鼓楼中队、南星中队、西湖中队、艮山中队、朝晖中队、大关中队,共有26辆消防车,见表1。计算火场的总供水能力。找出杭州市区供水分区图,取出天工艺苑区块管网图。从图中可看到天工艺苑前有两路环状管网,一路管径为400mm,一路管径为500mm。距天工艺苑230m的清泰街上另有管径为600mm的环状管网。根据管道供水能力估算:400mm时供水能力为192L/s;500mm时

11、供水能力为300L/s;600mm时供水能力为432L/s。按公式估算可得:400mm管网可停靠泵流量为30L/s的消防车192/306(辆); 500mm管网可停靠泵流量为30L/s的消防车300/3010(辆); 600mm管网可停靠泵流量为30L/s的消防车432/3014.414(辆)。三根环状管网的总供水能力为:192+300+432924(L/s)表1消防站及装备情况 型号数量(辆)泵流量(L/s)备注东风中型车1530共15辆黄河水罐350共3辆斯太尔260共2辆江淮160共1辆黄河泡沫250共2辆干粉车230共2辆高低压泵车140共1辆总数265.1.4确定主战车先分析天工艺苑

12、周围水源情况及供水能力,天工艺苑座落于解放路77号,在500米半径范围内有市政消火栓17个,其中解放路7个、建国路3个、清泰街1个、金鸡岭3个、民权路1个、永丰巷2个。每个消火栓压力按0.2Mpa。如果每辆消防车均按泵的实际工作流量计算,则解放路上400mm的管网可停靠泵流量为30L/s的消防车10辆,清泰街上60mm管网可停靠泵流量为30L/s的消防车14辆同时取水。如停靠大流量消防车取水,则同时使用消火栓数量应作相应减少。5.2灭火力量情况湖滨中队4辆消防车分别停靠解放路3个消火栓和金鸡岭与南班巷口消火栓,进行单车作战,总出水能力为150L/s。鼓楼中队两辆车,一车接近火场作战,另一车停靠

13、永丰巷消火栓供水,出水能力为50L/s。南星中队4辆车,斯太尔(大)车停靠金鸡岭内消火栓,直接出水灭火;黄河在停靠清泰街与金鸡岭口消火栓,为本中队的一辆中型水罐车供水,另一辆中型水罐车停靠建国路250m处消火栓直接出水灭火,总出水能力为140 L/s。西湖中队的黄河车停靠解放路440m处消火栓,铺12根干线为本中队的江淮(18t)水罐车供水;江淮车停靠解放路与天工艺苑之间的适当位置,另外两辆中型水罐车停靠在解放路,下关中队中型水罐车串联供水,出水能力为50 L/s。艮山中队两辆中型水罐车分别停靠直大方伯、建国路260m处的两个消火栓单独作战;一辆中型干粉车停靠解放路口与建国路中瑞大厦门口消火栓

14、取水,向黄河车供水,另一辆车停靠解放路450m处消火栓向黄河车供水,总出水能力为120 L/s。朝晖中队一辆中型水罐车停靠民权路口消火栓与本中队另两辆中型车串联供水。出水能力为30 L/s。大关中队斯太尔车停靠建国中队480m处消火栓与两辆中型车串联供水。另一辆中型车停靠解放路500m处消火栓与西湖中队两辆消防车串联供水,总出水能力为90 L/s。上述7个中队,共出动26辆消防车,实际停靠市政消火栓取水的16辆,累计出水总量为630 L/s。水源缺乏地区的出水能力的计算仍以天工艺苑发生火灾为例,平均运水距离设定为2Km,在半径8Km范围内仍可调动7个中队26辆消防车。运水车辆的计算公式为:N(

15、t1+t2+t3)/T+1 (3)式中:N-保证火场一辆战斗车不间断出水所需运水车辆数,辆;t1-水源吸水时间,min(包括停车接吸水管和吸水时间。根据实测,东风水罐车驾驶员一人操作时为1分钟37秒,二人操作为50秒。平均取1min为完成停车接吸水管、吸水、卸吸水管及消防车起动所需时间。);t2-供水车向主战车转输水的时间,min;t3-运水车往返时间,min(实测市区的车速为32.5Km/h;郊区的车速为38.5Km/h);T-一罐水在火场使用时间,min;1-火场战斗车一辆。东风水罐消防车(3600L)吸水时间为:装卸吸水管及起动消防车所需时间为1min,则:t1=2min+1min=3m

16、in转输时间等于吸水时间:t2=2min市区平均行驶速度计算:t3= T=2min N=(3+2+4)/2+1=5.56(辆)即1辆东风主战车需5辆东风车运水,才可满足不间断供水。根据天工艺苑区域车辆实际状况,15辆东风车、2辆干粉车、1辆高低压泵车,共18辆车要组成3个运水小组。3辆东风主战车出水总强度为90 L/s。还有3辆黄河、2辆斯太尔、1辆江淮、2辆黄河泡沫车,其吸水操作时间都可以50 L/s计,平均水罐容量8400L。t1t2t3=T2.8min N=(2.8+2.8+4)/2.8+1=5(辆)由此计算可知,8辆大吨位水罐车只能组成1个运水小组,其中出水强度为50L/s。因此,26

17、辆消防车在单位时间内的出水总强度Q为90+50140 L/s。需要注意的是,以上计算的出水强度数一般比实际出水量要大一些。因为,这里都按车辆泵流量计算,而未考虑到沿途洒漏等水量损失。出水强度还与水枪的口径大小、压力大小、充实水柱大小有关,是个变数,故以泵流量计算较为妥当。几点启示综上所述,不同的计算方式可得出不同的定量分析数据,并对不同内容的计算有指导意义。按上述计算方法,如加入8Km半径内的专职队力量,计算结果即为消防部队和民间消防力量对城市常规火灾的定量灭火能力。对于高层建筑火灾,计算时可考虑自动灭火系统,消防水箱(水池)等条件来计算扑救高层建筑立体火灾的出水强度。为了与实战接近,可利用各种水源来提高我们的灭火强度。但该数据没有横向可比性。根据氧气(空气)呼吸器的数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论