第5讲 数列与不等式(2022年高考真题)(解析版)_第1页
第5讲 数列与不等式(2022年高考真题)(解析版)_第2页
第5讲 数列与不等式(2022年高考真题)(解析版)_第3页
第5讲 数列与不等式(2022年高考真题)(解析版)_第4页
第5讲 数列与不等式(2022年高考真题)(解析版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5讲 数列与不等式 一、单选题1(2022全国高考真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图其中是举,是相等的步,相邻桁的举步之比分别为已知成公差为0.1的等差数列,且直线的斜率为0.725,则()A0.75B0.8C0.85D0.9【答案】D【解析】【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D2(2022全国高考真题(理)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数

2、列:,依此类推,其中则()ABCD【答案】D【解析】【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.【详解】解:因为,所以,得到,同理,可得,又因为,故,;以此类推,可得,故A错误;,故B错误;,得,故C错误;,得,故D正确.故选:D.3(2022全国高考真题(文)已知等比数列的前3项和为168,则()A14B12C6D3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.二、填空题4(2022全国高考真题(文)记为等差数列的前n项和若,则公差_

3、【答案】2【解析】【分析】转化条件为,即可得解.【详解】由可得,化简得,即,解得.故答案为:2.三、解答题5(2022全国高考真题)已知为等差数列,是公比为2的等比数列,且(1)证明:;(2)求集合中元素个数【答案】(1)证明见解析;(2)【解析】【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得,即可解出(1)设数列的公差为,所以,即可解得,所以原命题得证(2)由(1)知,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为6(2022全国高考真题)记为数列的前n项和,已知是公差为的等差数列(1)求的通项公式;(2)证明:【答案】(1)(2)见解析【解析

4、】【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;(2)由(1)的结论,利用裂项求和法得到,进而证得.(1),,又是公差为的等差数列,,当时,,整理得:,即,,显然对于也成立,的通项公式;(2) 7(2022全国高考真题(理)记为数列的前n项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值【答案】(1)证明见解析;(2)【解析】【分析】(1)依题意可得,根据,作差即可得到,从而得证;(2)由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得(1)解:因为,即,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论