版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版九年级数学下册第二十八章-锐角三角函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,某村准备在坡角为的山坡上栽树,要求相邻两棵树之间的水平距离为(m),那么这两棵树在坡面上的距离
2、AB为( )Amcos(m)B(m)Cmsin(m)D(m)2、如图,点为边上的任意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD3、如图,中,它的周长为22若与,三边分别切于E,F,D点,则劣弧的长为( )ABCD4、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D5、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD6、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD7、如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到,则的值
3、为( )ABCD8、如图,在RtABC中,C90,BC1,以下正确的是( )ABCD9、请比较sin30、cos45、tan60的大小关系()Asin30cos45tan60Bcos45tan60sin30Ctan60sin30cos45Dsin30tan60cos4510、在中,C=90,A、B、C的对边分别为、,则下列式子一定成立的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,BDAB,BD、AC相交于点D,ADAC,AB2,ABC150,则DBC的面积是_2、比较大小:tan46_cos463、如图,点A、B、C都在格点上,则CA
4、B的正切值为_4、如图所示,在RtABC中,ACB = 90,A = 30,AC = 15 cm,点O在中线CD上,当半径为3 cm的O与ABC的边相切时,OC =_ 5、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化经测量发现,当小明站在点A处时,塔顶D的仰角为37,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53,则观光塔CD的高度约为 _.(精确到0.1米,参考数值:tan37,tan53)三、解答题(5小题,每小题10分,共计50分)1、解方程(1)2x2+3x3(2)计算:4sin30+2cos45tan6022、如
5、图,矩形的两边在坐标轴上,点A的坐标为,抛物线过点B,C两点,且与x轴的一个交点为,点P是线段CB上的动点,设()(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作,交抛物线于点E,连接BE,当t为何值时,和中的一个角相等?(3)点Q是x轴上的动点,过点P作PMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形为正方形时,求t的值3、如图,建筑物上有一高为的旗杆,从D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,则建筑物的高约为多少米?(结果保留小数点后一位)(参考数据,)4、计算:tan605、计算:-参考答案-一、单选题1、B【分析】直接利用锐角三角函数关系得出,进而
6、得出答案【详解】由题意可得:,则AB=故选:B【点睛】此题主要考查了解直角三角形的应用,正确记忆锐角三角函数关系是解题关键2、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键3、B【分析】连接OD、OF,过点O作OGDF于点G,则,DOG=FOG,根据与,三边分别切于E,F,D点,可得AD=AF,BD=BE,CE=CF,ADO=AFO=90,从而得到AD=AF=3,再由,可得 ,DOF=120,从而求出OD,即可求解【详解】解:如图,连接OD、OF,过点O作OGDF于点G,则,DOG=FO
7、G, 与,三边分别切于E,F,D点,AD=AF,BD=BE,CE=CF,ADO=AFO=90,BC=8,BD+CF=BE+CE=BC=8,的周长为22AD+AF+BD+BE+CE+CF=22,AD+AF=6,AD=AF=3,ADF为等边三角形,DOF=120,DF=AD=3, ,DOG=60, ,劣弧的长为 故选:B【点睛】本题主要考查了圆的基本性质,垂径定理,求弧长,锐角三角函数,熟练掌握相关知识点是解题的关键4、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90得到ACB=90,同弧所对圆周角相等得到APC=ABC=45,AD平分PAB得到 BAD = DAP,结合外
8、角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90CAB = CBA= 45同弧所对圆周角相等APC=ABC=45AD平分PAB BAD = DAPCDA= DAP+ APC = 45+ DAPCAD= CAB+BAD = 45+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90,CAB = 45, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直
9、径所对的圆周角是90、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用5、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化6、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的
10、性质,可得OAB=30,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键7、B【分析】利用勾股定理逆定理得出CDB是直角三角形,以及锐角三角函数关系进而得出结论【详解】解:如图,连接BD,由网格利用勾股定理得:是直角三角形,故选:B【点睛】本题考查旋转的性质、等腰三角形的性质、余弦等知识,是重要考点,掌握相关知识是解题关键8、C【分析】根据勾
11、股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键9、A【分析】利用特殊角的三角函数值得到sin30,cos45,tan60,从而可以比较三个三角函数大小【详解】解答:解:sin30,cos45,tan60,而,sin30cos45tan60故选:A【点睛】本题主要考查了特殊角的三角函数值的应用,实数比大小,准确计算是解题的关键10、B【分析
12、】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可【详解】解:由题意可得,如下图:,则,A选项错误,不符合题意;,则,B选项正确,符合题意;,则,C选项错误,不符合题意;,则,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解二、填空题1、3314#3143【解析】【分析】过点作,交延长线于点,先根据相似三角形的判定证出,根据相似三角形的性质可得,从而可得,再解直角三角形可得,从而可得,然后利用三角形的面积公式即可得【详解】解:如图,过点作,交延长线于点,解得,又,在中,即,解得,解得,则的面积是,故答
13、案为:【点睛】本题考查了相似三角形的判定与性质、解直角三角形等知识点,通过作辅助线,构造相似三角形是解题关键2、【解析】【分析】根据tan46tan45=1cos46即可比较【详解】4645tan46tan45=11cos46tan46cos46故答案为:【点睛】此题主要考查三角函数值的大小比较,解题的关键是熟知三角函数的性质3、#0.5【解析】【分析】过作垂直于的延长线于点,则为直角三角形,解直角三角形即可求解【详解】如图:过作垂直于的延长线于点,为直角三角形在中故答案为:【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答4、或6【解析】【分析】
14、先求出,分三种情况,利用O的切线的特点构造直角三角形,用三角函数求解即可【详解】解:RtABC中,ACB=90,A=30,B=60,AC = 15 cm, ,CD为AB边上中线,BDC=BCD=B=60,ACD=A=30,当O与AB相切时,过点O作OEAB于E,如图1,在RtODE中,BDC=60,OE=3,;当O与BC相切时,过O作OEBC,如图2,在RtOCE中,BCD=60,OE=3,;当O与AC相切时,过O作OEAC于E,如图3,在RtOCE中,ACD=30,OE=3,故答案为或6【点睛】此题是切线的性质,主要考查了直角三角形的性质,斜边的中线等于斜边的一半,锐角三角函数,解本题的关键
15、是用圆的切线构造直角三角形,借助三角函数来求解5、8.6米【解析】【分析】根据题意,利用锐角三角函数解直角三角形即可【详解】解:由题意知,A=37,DBC=53,D=90,AB=5,在RtCBD中,tanDBC=,BC=,在RtCAD中,tanA=,即=tan37解得:CD=8.6,答:观光塔CD的高度约为8.6米【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键三、解答题1、(1);(2)【解析】【分析】(1)利用公式法求解即可得;(2)将特殊锐角的三角函数值代入,再计算乘法,最后计算加减法即可得【详解】解:(1)化成一般形式为,此方程中的,则,即,故
16、方程的解为;(2)原式,【点睛】本题考查了解一元二次方程、特殊角的三角函数值的混合运算,熟练掌握方程的解法和特殊角的三角函数值是解题关键2、(1)C(0,4),B(10,4),抛物线解析式为yx2x4;(2)t3时,PBEOCD;(3)t的值为或【解析】【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得PBEOCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得COQQAB,利用相似三角形
17、的性质可求得CQ的长,在RtBCQ中根据勾股定理可求得BQ、CQ,利用三角函数可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值【详解】解:(1)在yax2bx4中,令x0可得y4,C(0,4),四边形OABC为矩形,且A(10,0),B(10,4),把B、D坐标代入抛物线解析式可得,解得,抛物线解析式为yx2x4;(2)点P在BC上,可设P(t,4),点E在抛物线上,E(t,t2t4),PB10t,PEt2t44t2t,BPECOD90,当PBEOCD时,则PBEOCD,即BPODCOPE,2(10t)4(t2t),解得t3或t10(不合题意,舍去),当t3时,PBEOCD; 当P
18、BECDO时,则PBEODC,即BPOCDOPE,4(10t)2(t2t),解得t12或t10(均不合题意,舍去)综上所述当t3时,PBEOCD;(3)当四边形PMQN为正方形时,则PMCPNBCQB90,PMPN,CQOAQB90,CQOOCQ90,OCQAQB,COQ=QAB=90COQQAB,即OQAQCOAB,设OQm,则AQ10m,m(10m)44,整理得,解得m2或m8,当m2时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),解得t,当m8时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),可求得t,当四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会议宣传服务合同范本
- 卖房中介渠道合同范本
- 农村耕地买卖合同范本
- 位聘用保安协议书范本
- 劳动合同聘请协议范本
- 动物商标买卖合同范本
- 合伙开饭店的合同范本
- 劳务合同工资补充协议
- 劳务协议要签几份合同
- 前楼挖机出租合同范本
- 实验设计DOE培训
- 第9课-秦统一中国【课件】(共30张课件)
- 智算中心发展创新指南
- 成都中医药大学《诊断学基本技能训练(一)》2021-2022学年第一学期期末试卷
- 2025年九省联考新高考 英语试卷(含答案解析)
- 数据分包灵活传(教学课件)-七年级信息科技全一册同步教学(人教版2024)
- 河道清淤疏浚投标方案(技术方案)
- 自考美学章节练习题
- 研究生学术表达能力培养智慧树知到答案2024年西安建筑科技大学、清华大学、同济大学、山东大学、河北工程大学、《环境工程》英文版和《环境工程》编辑部
- 初中英语趣味竞赛市公开课一等奖省赛课微课金奖课件
- SL-T+712-2021河湖生态环境需水计算规范
评论
0/150
提交评论