精品解析:最新浙教版初中数学七年级下册第四章因式分解专题训练试卷(无超纲)_第1页
精品解析:最新浙教版初中数学七年级下册第四章因式分解专题训练试卷(无超纲)_第2页
精品解析:最新浙教版初中数学七年级下册第四章因式分解专题训练试卷(无超纲)_第3页
精品解析:最新浙教版初中数学七年级下册第四章因式分解专题训练试卷(无超纲)_第4页
精品解析:最新浙教版初中数学七年级下册第四章因式分解专题训练试卷(无超纲)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初中数学七年级下册第四章因式分解专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.2、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学3、已知,则代数式的值为( )A.B.1C.D.24、下列因式分解正确的是()A.x24(x

2、+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)25、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126016、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a7、下列各式从左到右的变形中,是因式分解的为( ).A

3、.B.C.D.8、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.79、下列由左边到右边的变形中,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)10、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主11、的值为( )A.B.C.D.35312、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b213、下列因式

4、分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)214、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解15、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.12二、填空题(10小题,每小题4分,共计40分)1、因式分解(ab)2a+b的结果是_2、因式分解:_3、已知,则的值为_4、因式分解:=_5、因式分解:_6、若m2n2021,n2m2021(mn

5、),那么代数式m32mnn3的值 _7、若ab=2,a-b=3,则代数式ab2-a2b=_8、因式分解:_9、如果,那么的值为_10、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、(1)计算与化简: (2)因式分解: (3)先化简,再求值:,其中,2、分解因式:3x318x2+27x3、材料一:对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到M,则称M为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为F(M)例如523为325的“倒序数”,F(325)2;材料二:对于任意三位数满足,ca且a+c2b,则称这个数为“登高数”(1)F(935);F(

6、147);(2)任意三位数M,求F(M)的值;(3)已知S、T均为“登高数”,且2F(S)+3F(T)24,求S+T的最大值-参考答案-一、单选题1、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.2、C【分析】把所给的式子运用提公因式和平方差

7、公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.3、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.4、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式

8、(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.6、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,

9、这种变形叫做把这个因式分解.7、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .8、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a

10、是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.9、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的

11、定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.11、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【

12、详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.12、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.13、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不

13、符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.15、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x

14、+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.二、填空题1、(ab)(ab1)【分析】先整理,再根据提取公因式法分解因式即可得出答案.【详解】解:(ab)2a+b(ab)2(ab)(ab)(ab1).故答案为:(ab)(ab1).【点睛】本题考查了分解因式,熟练掌握提取公因式法分解因式是解题的关键.2、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.3、-4【分析】由ab8,得到a8b,代

15、入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.4、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解.5、【分析】根据十字相乘法分解即可.【详解】解:=,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.6、-2021【分析】将两式m2=n+2021,n2

16、=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为mn,所以m-n0),m+n=-1,将m2=n+2021两边乘以m,得m=mn+2021m ,将n2=m+2021两边乘以n,得n=mn+2021n ,由+得:m+n=2mn+2021(m+n),m+n-2mn=2021(m+n),m+n-2mn=2021(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m3-2mn+n3的降次处理是解

17、题关键.7、6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:ab=2,a-b=3,ab2-a2b=-ab(a-b)=23=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.8、【分析】将y(1-m)变形为-y(m-1),再提取公因式即可.【详解】x(m-1)+ y(1-m)= x(m-1)-y(m-1),=(x-y)(m-1),故答案为:(x-y)(m-1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.9、54【分析】先利用平方差公式分解因式,

18、再代入求值,即可.【详解】解:=293=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.10、【分析】先分组,然后根据公式法因式分解.【详解】.故答案为:.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.三、解答题1、(1)-2;(2);(3);-6【分析】(1)根据实数的运算法则,求一个数的绝对值以及负整数指数幂运算即可;根据完全平方公式以及平方差公式计算即可;(2)先提取公因式ab,然后运用完全平方公式因式分解即可;先提取公因式,然后运用平方差公式因式分解即可;(3)根据整式的混合运算法则化简,代入求解即可.【详解】解:(1), (2) (3)将代入得: 原式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论