2023学年甘肃省金昌市金川六中学数学九年级第一学期期末学业水平测试试题含解析_第1页
2023学年甘肃省金昌市金川六中学数学九年级第一学期期末学业水平测试试题含解析_第2页
2023学年甘肃省金昌市金川六中学数学九年级第一学期期末学业水平测试试题含解析_第3页
2023学年甘肃省金昌市金川六中学数学九年级第一学期期末学业水平测试试题含解析_第4页
2023学年甘肃省金昌市金川六中学数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是ABCD2若点

2、,在双曲线上,则,的大小关系是( )ABCD3以下五个图形中,是中心对称图形的共有()A2个B3个C4个D5个4如图,C过原点,与x轴、y轴分别交于A、D两点已知OBA=30,点D的坐标为(0,2),则C半径是()ABCD25如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D6把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )ABCD7已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A(6,1)B(1,6)C(2,3)D(3,2)8如图,PA、PB是O切线

3、,A、B为切点,点C在O上,且ACB55,则APB等于( )A55B70C110D1259如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为( )ABCD10将抛物线y=3x23向右平移3个单位长度,得到新抛物线的表达式为()Ay=3(x3)23By=3x2Cy=3(x+3)23Dy=3x2611下图中几何体的左视图是( )ABCD12在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场则参赛的球队数为()A6个B8个C9个D12个二、填空题(每题4分,共24分)13如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半

4、轴上,反比例函数y(x0)的图象与AB相交于点D与BC相交于点E,且BD3,AD6,ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_14若3a4b(b0),则_15如图,在中,点为的中点.将绕点逆时针旋转得到,其中点的运动路径为,则图中阴影部分的面积为_16点A,B都在反比例函数图象上,则_(填写,=号) 17如图,点在函数的图象上, 都是等腰直角三角形.斜边都在轴上(是大于或等于2的正整数),点的坐标是_18如图,在平面直角坐标系中,等腰RtOA1B1的斜边OA12,且OA1在x轴的正半轴上,点B1落在第一象限内将RtOA1B1绕原点O逆时针旋转45,得到RtOA2B2,再将R

5、tOA2B2绕原点O逆时针旋转45,又得到RtOA3B3,依此规律继续旋转,得到RtOA2019B2019,则点B2019的坐标为_三、解答题(共78分)19(8分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0)AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不

6、存在,请说明理由20(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F求证:OE=OF21(8分)已知,如图,是的直径,平分交平点.过点的切线交的延长线于.求证:.22(10分)福建省会福州拥有“三山两塔一条江”,其中报恩定光多宝塔(别名白塔),位于于山风景区,利用标杆可以估算白塔的高度.如图,标杆高,测得,求白塔的高.23(10分)小强在教学楼的点P处观察对面的办公大楼为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45,测得办公大楼底部点B的俯角为60,已知办公大楼高46米,CD10米求点P到AD的距离(用含根号的式

7、子表示)24(10分)如图,正方形的边长为9,、分别是、边上的点,且.将绕点逆时针旋转,得到.(1)求证:(2)当时,求的长.25(12分)尺规作图:已知ABC,如图(1)求作:ABC的外接圆O;(2)若AC4,B30,则ABC的外接圆O的半径为 26如图1,ABCD中,ABC、ADC的平分线分别交AD、BC于点E、F(1)求证:四边形EBFD是平行四边形;(2)如图2,小明在完成(1)的证明后继续进行了探索连接AF、CE,分别交BE、FD于点G、H,得到四边形EGFH此时,他猜想四边形EGFH是平行四边形,请在框图(图3)中补全他的证明思路,再在答题纸上写出规范的证明过程参考答案一、选择题(

8、每题4分,共48分)1、C【解析】分三段讨论:两车从开始到相遇,这段时间两车距迅速减小;相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意故选C2、C【分析】根据题目分别将三个点的横坐标值带入双曲线解析式,即可得出所对应的函数值,再比较大小即可【详解】解:若点,在双曲线上,故选:C【点睛】本题考查的知识点是反比例函数图象上点的坐标特征,本题还可以先分清各点所在象限,再利用各自的象限内反比例函数的增减性解决问题3、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形

9、重合,那么这个图形就叫做中心对称图形,进行判断【详解】解:从左起第2、4、5个图形是中心对称图形.故选:B【点睛】本题考查了中心对称的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4、B【解析】连接ADAOD=90,AD是圆的直径在直角三角形AOD中,D=B=30,OD=2,AD= ,则圆的半径是 故选B点睛:连接AD根据90的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得D=B=30,运用解直角三角形的知识即可求解5、A【解析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,

10、B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.6、A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形考点:平行投影7、B【解析】试题分析:反比例函数y=的图象经过点(2,3),k=23=6,A、(6)1=66,此点不在反比例函数图象上;B、16=6,此点在反比例函数图象上;C、2(3)=66,此点不在反比例函数图象上;D、3(2)=66,此点不在反比例函数图象上故选B考点:反比例函数图象上点的坐标

11、特征8、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得AOB110,再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA,PB是O的切线,PAOA,PBOB,ACB55,AOB110,APB360909011070故选B【点睛】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出AOB的度数9、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A【点睛】本题

12、考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键10、A【解析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线向右平移3个单位,得到的抛物线的解析式是故选A.【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减.11、D【分析】根据左视图是从左面看到的图形,即可【详解】从左面看从左往右的正方形个数分别为1,2,故选D【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键12、C【分析】设有x个队参赛,根据题意列出方程即可求出答案即可解决【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)36,解得:x9或x8(舍去)

13、,故选:C【点睛】本题考查了一元二次方程的应用,解决本题的关键是正确理解题意,找到题意中蕴含的等量关系.二、填空题(每题4分,共24分)13、【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小,利用勾股定理即可求得E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小【详解】解:四边形OCBA是矩形,ABOC,OABC,BD3,AD6,AB9,设B点的坐标为(9,b),D(6,b),D、E在反比例函数的图象上,6bk,E(

14、9,b),SODES矩形OCBASAODSOCESBDE9bkk3(bb)15,9b6bb15,解得:b6,D(6,6),E(9,4),作E点关于x的对称得E,则E(9,4),连接DE,交x轴于P,此时,PD+PEPD+PEDE最小,AB9,BE6+410,DE,故答案为【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型14、【分析】依据3a4b,即可得到ab,代入代数式进行计算即可【详解】解:3a4b,ab,故答案为:【点睛】本题主要考查了比例的性质,求出ab是解题的关

15、键15、【分析】连接,设AC、DE交于点N,如图,根据题意可得的度数和BM的长度,易证为的中位线,故MN可求,然后利用S阴影=S扇形MBE,代入相关数据求解即可.【详解】解:连接,设AC、DE交于点N,如图,由题意可知,且为的中点,为的中位线,S阴影=S扇形MBE.【点睛】本题考查了旋转的性质、三角形的中位线定理、扇形面积的计算等知识,属于常考题型,熟练掌握旋转的性质、将所求不规则图形的面积转化为规则图形的面积的和差是解题的关键.16、【分析】根据反比例函数的增减性即可得出结论【详解】解:中,-30在每一象限内,y随x的增大而增大-2-10故答案为:【点睛】本题考查了比较反比例函数值的大小,掌

16、握反比例函数的增减性与比例系数的关系是解题的关键17、【分析】过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,根据P1OA1,P2A1A2,P3A2A3都是等腰直角三角形,可求出P1,P2,P3的坐标,从而总结出一般规律得出点Pn的坐标【详解】解:过点P1作P1Ex轴于点E,过点P2作P2Fx轴于点F,过点P3作P3Gx轴于点G,P1OA1是等腰直角三角形,P1E=OE=A1E=OA1,设点P1的坐标为(a,a),(a0),将点P1(a,a)代入,可得a=1,故点P1的坐标为(1,1),则OA1=2,设点P2的坐标为(b+2,b),将点P2(b+2,b)代入

17、,可得b=,故点P2的坐标为(,),则A1F=A2F=,OA2=OA1+A1A2=,设点P3的坐标为(c+,c),将点P3(c+,c)代入,可得c=,故点P3的坐标为(,),综上可得:P1的坐标为(1,1),P2的坐标为(,),P3的坐标为(,),总结规律可得:Pn坐标为;故答案为:.【点睛】本题考查了反比例函数的综合,根据等腰三角形的性质结合反比例函数解析式求出P1,P2,P3的坐标,从而总结出一般规律是解题的关键.18、(1,1)【分析】观察图象可知,点B1旋转8次为一个循环,利用这个规律解决问题即可【详解】解:观察图象可知,点B1旋转8次一个循环,20188252余数为2,点B2019的

18、坐标与B3(1,1)相同,点B2019的坐标为(1,1)故答案为(1,1)【点睛】本题考查坐标与图形的变化旋转,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型三、解答题(共78分)19、(1)yx2x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析【分析】(1)根据题意可以得到C的坐标,然后根据抛物线过点A、C、D可以求得该抛物线的解析式;(2)根据对称轴和图形可以画出相应的图形,然后找到使得四边形EAMN的周长的取得最小值时的点M和点N即可,然后求出直线MN的解析式,然后直线MN与x轴的交点即可解答本题;(3)根据题意作出合适的图形,然后根据平行四边形

19、的性质可知EHFP,而通过计算看EH和FP是否相等,即可解答本题【详解】解:(1)AEx轴,OE平分AOB,AEOEOBAOE,AOAE,A(0,2),E(2,2),点C(4,2),设二次函数解析式为yax2+bx+2,C(4,2)和D(3,0)在该函数图象上,得,该抛物线的解析式为yx2x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x轴于点M,交线段BC于点N根据对称与最短路径原理,此时,四边形AMNE周长最小易知A1(0,2),E1(6,2)设直线A1E1的解析式为ykx+b,得,直线A1E1的解析式为当y0时,x3,点M的坐标为(3,0)由勾股

20、定理得AM,ME1,四边形EAMN周长的最小值为AM+MN+NE+AEAM+ME1+AE;(3)不存在理由:过点F作EH的平行线,交抛物线于点P易得直线OE的解析式为yx,抛物线的解析式为yx2x+2,抛物线的顶点F的坐标为(2,),设直线FP的解析式为yx+b,将点F代入,得,直线FP的解析式为,解得或,点P的坐标为(,),FP(2),解得,或,点H是直线yx与抛物线左侧的交点,点H的坐标为(,),OH,易得,OE2,EHOEOH2 ,EHFP,点P不符合要求,不存在点P,使得四边形EHFP为平行四边形 【点睛】本题主要考察二次函数综合题,解题关键是得到C的坐标,然后根据抛物线过点A、C、D

21、求得抛物线的解析式.20、证明见解析.【分析】由四边形ABCD是平行四边形,可得ADBC,OA=OC,继而可利用ASA判定AOECOF,继而证得OE=OF【详解】证明:四边形ABCD是平行四边形,ADBC,OA=OC,OAE=OCF,在AOE和COF中,AOECOF(ASA),OE=OF【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用21、详见解析.【分析】连接,由切线的性质可知ODE=90,证ODAE即可解决问题;【详解】连接.是的切线,平分,.【点睛】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考

22、题型22、为米.【分析】先证明,然后利用相似三角形的性质得到,从而代入求值即可.【详解】解:依题意,得,.,.,白塔的高为米.【点睛】本题考查相似三角形的实际应用,掌握相似三角形对应边成比例是本题的解题关键.23、 【分析】连接PA、PB,过点P作PMAD于点M;延长BC,交PM于点N,将实际问题中的已知量转化为直角三角形中的有关量,设PM=x米,在RtPMA中,表示出AM,在RtPNB中,表示出BN,由AM+BN=46米列出方程求解即可【详解】解:连结PA、PB,过点P作PMAD于点M;延长BC,交PM于点N则APM=45,BPM=60,NM=10米设PM=x在RtPMA中,AM=PMtan

23、APM=xtan45x(米)在RtPNB中,BN=PNtanBPM=(10)tan60(10)(米由AM+BN=46米,得x+(x10)46解得,x= 点P到AD的距离为米【点睛】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键24、(1)见解析;(2)7.1【分析】(1)由旋转可得DE=DM,EDM为直角,可得出EDF+MDF=90,由EDF=41,得到MDF=41,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=3,正方形的边长为9,用ABAE求出EB的长

24、,再由BC+CM求出BM的长,设EF=x,可得出BF=BMFM=BMEF=12x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【详解】(1)DAE逆时针旋转90得到DCM,FCM=FCD+DCM=180,F、C、M三点共线,DE=DM,EDM=90,EDF+FDM=90EDF=41,FDM=EDF=41,在DEF和DMF中,DEFDMF(SAS),EF=MF;(2)设EF=x,则MF=xAE=CM=3,且BC=9,BM=BC+CM=9+3=12,BF=BMMF=BMEF=12xEB=ABAE=93=6,在RtEBF中,由勾股定理得:EB2+BF2=EF2,即62+(12x)2=x2,解得:x=7.1,则EF=7.1【点睛】本题考查了正方形的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论