




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1在平面直角坐标系中,点在双曲线上,点A关于y轴的对称点B在双曲线上,则的值为ABCD2某班七个兴趣小组人数分别为4,4,5,x,1,1,1已知这组数据的平均数是5,则这组数据的中位数是
2、( )A7B1C5D43如图所示的几何体是由六个小正方体组合而成的,它的俯视图是( )ABCD4下列四个几何体中,左视图为圆的是()ABCD5如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得C120,A,B两点之间的距离为60m,则这段公路AB的长度是( )A10mB20mC10mD60m6如图,点A、B、C是O上的点,AOB=70,则ACB的度数是()A30B35C45D707按如图所示的方法折纸,下面结论正确的个数( )290;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个8下列事件中,是随机事件的是( )A画一个三角形,其内角和是
3、180B在只装了红色卡片的袋子里,摸出一张白色卡片C投掷一枚正六面体骰子,朝上一面的点数小于7D在一副扑克牌中抽出一张,抽出的牌是黑桃69方程的解是( )A0B3C0或3D0或310如图,在ABC中,DEBC,若,则的值为()ABCD二、填空题(每小题3分,共24分)11底角相等的两个等腰三角形_相似.(填“一定”或“不一定”)12从0,1,2,3,4中任取两个不同的数,其乘积为0的概率是_.13已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_.14抛掷一枚质地均匀的硬币一次,正面朝上的概率是_15如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,BEF70,则A
4、BE_度16如图,抛物线向右平移个单位得到抛物线_17在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是_18若x1,x2是一元二次方程2x2x30的两个实数根,则x1x2_三、解答题(共66分)19(10分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角与满足+290,那么我们称这样的三角形为“类直角三角形”尝试运用(1)如图1,在RtABC中,C90,BC3,AB5,BD是ABC的平分线证明ABD是“类直角三角形”;试问在边AC上是否存在点E(异于点D),使得ABE也是“类直角三角形”?若存在,请求出CE的长;若不存
5、在,请说明理由类比拓展(2)如图2,ABD内接于O,直径AB10,弦AD6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且CADAOD,当ABC是“类直角三角形”时,求AC的长20(6分)如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米(1)求电线杆上点离地面的距离;(2)若拉线,的长度之和为18米,求固定点和之间的距离21(6分)中华人民共和国城市道路路内停车泊位设置规范规定:米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊
6、位;米,车位宽米;米.根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:(1)可在该道路两侧设置停车泊位的排列方式为 ;(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.(参考数据:,)22(8分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60的方向,从B测得小船在北偏东45的方向(1)求A、B两观景台之间的距离;(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离(结果保留根号
7、)23(8分)先化简,再求值:,其中24(8分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当BMN是等腰三角形时,直接写出m的值25(10分)如图,直线yx+3与x轴、y轴分别交于B、C两点,抛物线yx2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D(1)求抛物线的解析式;(2)在x轴上找一点E,使EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得APBOCB
8、?若存在,求出PB2的值;若不存在,请说明理由26(10分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售(1)求平均每次下调的百分率(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:打折销售;不打折,一次性送装修费每平方米元试问哪种方案更优惠?参考答案一、选择题(每小题3分,共30分)1、B【分析】由点A(a,b)在双曲线上,可得ab=-2,由点A与点B关于y轴的对称,可得到点B的坐标,进而求出k,然后得出答案【详解】解:点A(a,
9、b)在双曲线上,ab=-2;又点A与点B关于y轴对称,B(-a,b)点B在双曲线上,k=-ab=2;=2-(-2)=4;故选:D【点睛】本题考查反比例函数图象上的点坐标的特征,关于y轴对称的点的坐标的特征2、C【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数【详解】解:某班七个兴趣小组人数分别为4,4,3,x,1,1,2已知这组数据的平均数是3,x=32-4-4-3-1-1-2=3,这一组数从小到大排列为:3,4,4,3,1,1,2,这组数据的中位数是:3故选:C【点睛】本题考查的是中位数,熟知中位数的定义是解答此题的关键3、D【分析】根据从上边看得到的图形
10、是俯视图,可得答案【详解】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是两个小正方形,故选:D【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图4、A【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析 较容易题.失分原因是不会判断常见几何体的三视图.5、B【分析】连接OA,OB,OC,根据切线的性质得到OACOBC90,ACBC,推出AOB是等边三角形,得到OAAB60,根据弧长的计算公式即可得
11、到结论【详解】解:连接OA,OB,OC,AC与BC是O的切线,C120,OACOBC90,ACBC,AOB60,OAOB,AOB是等边三角形,OAAB60,公路AB的长度20m,故选:B【点睛】本题主要考察切线的性质及弧长,解题关键是连接OA,OB,OC推出AOB是等边三角形.6、B【解析】AOB=70,ACB=AOB=35,故选B7、C【解析】1+1=2,1+1+2=180,1+1=2=90,故正确;1+1=2,1AEC.故不正确;1+1=90,1+BAE=90,1=BAE,又BC,ABEECF.故,正确;故选C.8、D【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】A. 画一
12、个三角形,其内角和是180,是必然事件,故不符合题意;B. 在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C. 投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D. 在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2
13、=3故选D【点睛】掌握因式分解法解一元二次方程.10、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案【详解】解:,DEBC,故选:A【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键二、填空题(每小题3分,共24分)11、一定【分析】根据等腰三角形的性质得到B=C,E=F,根据相似三角形的判定定理证明【详解】如图:AB=AC,DE=EF,B=C,E=F,B=E,B=C=E=F,ABCDEF,故答案为一定【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键12、【分析】首先根据题意画出表格,然后由
14、表格求得所有等可能的结果与其乘积等于0的情况,再利用概率公式即可求得答案;【详解】解:画表格得:共由20种等可能性结果,其中乘积为0有8种,故乘积为0的概率为,故答案为:.【点睛】本题主要考查了列表法与树状图法,掌握列表法与树状图法是解题的关键.13、【分析】根据根与系数的关系可得要使有两个不相等的实数根,则必须,进而可以计算出k的取值范围.【详解】解:根据根与系数的关系可得要使有两个不相等的实数根,则. 故答案为.【点睛】本题主要考查二元一次方程的根与系数的关系,根据方程根的个数,列不等式求解.14、 【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可【详解】抛掷一
15、枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=故答案为【点睛】本题考查了概率公式,概率=发生的情况数所有等可能情况数15、1【分析】根据折叠的性质,得DEFBEF70,结合平角的定义,得AEB40,由ADBC,即可求解【详解】将长方形纸片ABCD折叠,使点D与点B重合,DEFBEF70,AEB+BEF+DEF180,AEB18027040ADBC,EBFAEB40,ABE90EBF1故答案为:1【点睛】本题主要考查折叠的性质,平角的定义以及平行线的性质定理,掌握折叠的性质,是解题的关键16、【分析】先确定抛物线的顶点坐标为(0,2),再利用点平移的规律得到点(0,2)
16、平移后所得对应点的坐标为(1,2),然后根据顶点式可得平移后的抛物线的解析式【详解】解:抛物线的顶点坐标为(0,2),把点(0,2)向右平移1个单位所得对应点的坐标为(1,2),平移后的抛物线的解析式是:;故答案为【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式17、【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球
17、的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18、【分析】直接利用根与系数的关系求解【详解】解:根据题意得x1+x2故答案为【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1x2=三、解答题(共66分)19、(1)证明见解析;CE;(2)当ABC是“类直角三角形”时,AC的长为或【分析】(1)证明A+2ABD=90即可解决问题如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,证明ABCBEC,可得,由此构建方程即可解决问题(2)分两种情形:如图2中,
18、当ABC+2C=90时,作点D关于直线AB的对称点F,连接FA,FB则点F在O上,且DBF=DOA如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,可证C+2ABC=90,利用相似三角形的性质构建方程即可解决问题【详解】(1)证明:如图1中,BD是ABC的角平分线,ABC2ABD,C90,A+ABC90,A+2ABD90,ABD为“类直角三角形”;如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”,在RtABC中,AB5,BC3,AC,AEBC+EBC90,ABE+2A90,ABE+A+CBE90,ACBE,ABCBEC,CE,(2)
19、AB是直径,ADB90,AD6,AB10,BD,如图2中,当ABC+2C90时,作点D关于直线AB的对称点F,连接FA,FB,则点F在O上,且DBFDOA,DBF+DAF180,且CADAOD,CAD+DAF180,C,A,F共线,C+ABC+ABF90,CABF,FABFBC,即 ,AC如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,C+2ABC90,CADCBF,CC,DACFBC,即,CD(AC+6),在RtADC中, (ac+6)2+62AC2,AC或6(舍弃),综上所述,当ABC是“类直角三角形”时,AC的长为 或【点睛】本题主要考查圆综合题,考查
20、了相似三角形的判定和性质,“类直角三角形”的定义等知识, 解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.20、(1)米(2)米【分析】(1)过点A作AHCD于点H,可得四边形ABDH为矩形,根据A处测得电线杆上C处得仰角为30,在ACH中求出CH的长度,从而得出CD的长;(2)然后在RtCDE中求出DE的长度,根据等腰三角形的性质,可得出DF=DE,从而得出EF的长【详解】解:(1)过作于,由条件知,为矩形,在中,即,为米(2),在中,、之间的距离为米【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形21、
21、(1)平行式或倾斜式(2)1【分析】(1)对应三种方式分别验证是否合适即可;(2)分别按照第(1)问选出来的排列方式计算停车泊位,进行比较取较大者即可.【详解】(1)除去两车道之后道路宽 因为要在道路两旁设置停车泊位,所以每个停车泊位的宽必须小于等于3m,所以方式3垂直式不合适,排除;方式1平行式满足要求,对于房市,它的宽度为,要满足要求,必须有,即,所以当时,方式2倾斜式也能满足要求.故答案为平行式或倾斜式(2)若选择平行式,则可设置停车泊位的数量为(个)若选择倾斜式,每个停车泊位的宽度为 ,要使停车泊位尽可能多,就要使宽度尽可能小,所以取,此时每个停车位的宽度为 ,所以可设置停车泊位的数量
22、为(个)故答案为1【点睛】本题主要考查理解能力以及锐角三角函数的应用,掌握锐角三角函数的定义是解题的关键.22、(1)A、B两观景台之间的距离为(5+5)km;(2)观测站B到射线AP的最短距离为()km【分析】(1)过点P作PDAB于点D,先解RtPBD,得到BD和PD的长,再解RtPAD,得到AD和AP的长,然后根据BD+AD=AB,即可求解;(2)过点B作BFAC于点F,解直角三角形即可得到结论【详解】解:(1)如图,过点P作PDAB于点D在RtPBD中,BDP90,PBD904545,BDPDBP5km在RtPAD中,ADP90,PAD906030,ADPD5km,PA1ABBD+AD
23、(5+5)km;答:A、B两观景台之间的距离为(5+5)km;(2)如图,过点B作BFAC于点F,则BAP30,AB(5+5),BFAB()km答:观测站B到射线AP的最短距离为()km【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中通过作辅助线,构造直角三角形是解题的关键23、1【分析】注意到可以利用完全平方公式进行展开,利润平方差公式可化为,则将各项合并即可化简,最后代入进行计算【详解】解:原式将代入原式【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.24、
24、(1)这个二次函数的表达式是y=x14x+3;(1)SBCP最大=;(3)当BMN是等腰三角形时,m的值为,1,1【解析】分析:(1)根据待定系数法,可得函数解析式;(1)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案详解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x1-4x+3;(1)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式
25、,得,解这个方程组,得 直线BC的解析是为y=-x+3,过点P作PEy轴,交直线BC于点E(t,-t+3),PE=-t+3-(t1-4t+3)=-t1+3t,SBCP=SBPE+SCPE=(-t1+3t)3=-(t-)1+,-0,当t=时,SBCP最大=.(3)M(m,-m+3),N(m,m1-4m+3)MN=m1-3m,BM=|m-3|,当MN=BM时,m1-3m=(m-3),解得m=,m1-3m=-(m-3),解得m=-当BN=MN时,NBM=BMN=45,m1-4m+3=0,解得m=1或m=3(舍)当BM=BN时,BMN=BNM=45,-(m1-4m+3)=-m+3,解得m=1或m=3(
26、舍),当BMN是等腰三角形时,m的值为,-,1,1点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(1)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏25、(1)yx2+2x+3;(2)点E(,0);(3)PB2的值为16+8【分析】(1)求出点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式,即可求解;(2)如图1,作点C关于x轴的对称点C,连接CD交x轴于点E,则此时EC+ED为最小,EDC的周长最小,即可求解;(3)分点P在x轴上方、点P在x轴下方两种情况,由勾股定理可求解【详解】(1)直线y=x+3与x轴、y轴分别交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行营销试题及答案
- 税务会计专业试题及答案
- 机械专业试题作业及答案
- 通信专业笔试题及答案
- 湖北省汉川市金益高级中学2025-2026学年高二上学期9月起点考试地理试卷(含答案)
- 文案策划专业试题及答案
- 高级文秘专业试题及答案
- 9月份班主任工作总结范文
- 建筑施工方案怎么查找
- 家具组织施工方案模板
- 厂区视频监控安装合同范本
- XX资产评估有限公司内部管理制度
- 土地复垦施工设计
- GB/T 5023.3-2008额定电压450/750 V及以下聚氯乙烯绝缘电缆第3部分:固定布线用无护套电缆
- GB/T 21471-2008锤上钢质自由锻件机械加工余量与公差轴类
- GB/T 12670-2008聚丙烯(PP)树脂
- 非贸项下对外付汇的政策解读和实操疑难解答课件
- 高中心理健康课程《人际关系-寝室篇》课件
- 水产微生物学
- 电力系统继电保护课程设计报告-三段式距离保护
- 香港永久性居民在内地所生中国籍子女赴香港定居申请表
评论
0/150
提交评论