广西崇左市江州区2023学年数学九上期末质量跟踪监视试题含解析_第1页
广西崇左市江州区2023学年数学九上期末质量跟踪监视试题含解析_第2页
广西崇左市江州区2023学年数学九上期末质量跟踪监视试题含解析_第3页
广西崇左市江州区2023学年数学九上期末质量跟踪监视试题含解析_第4页
广西崇左市江州区2023学年数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是A(6,0)B(6,3)C(6,5)D(4,2)2如图,在四边形中,对角线、交于点有以下四个结论其中始终正确的有( ); ; A1个B2个C3个D4个3已知二次函数

2、图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是( )ABCD4下列四幅图案,在设计中用到了中心对称的图形是( )ABCD5把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是( )ABCD6如图,是等边三角形,且与轴重合,点是反比例函数的图象上的点,则的周长为( )ABCD7如图,将(其中B=33,C=90)绕点按顺时针方向旋转到的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()ABCD8如图,在O,点A、B、C在O上,若OAB54,则C()A54B27C36D469在二次函数的图像中,若随的增大而增大,则的取值范围是ABCD10下列图形是我国国产品牌汽车的标识,这

3、些汽车标识中,是中心对称图形的是()ABCD二、填空题(每小题3分,共24分)11分解因式_12如图,在ABC中,BAC=90,AB=AC=10cm,点D为ABC内一点,BAD=15,AD=6cm,连接BD,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为_cm.13如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为_14如图是测量河宽的示意图,AE与BC相交于点D,B=C=90,测得BD=120m,DC=60m,EC=50m,求得河宽AB=_m15如图,将边长为4的正方形沿其对角线剪开,再把沿着方向

4、平移,得到,当两个三角形重叠部分的面积为3时,则的长为_16对于任意非零实数a、b,定义运算“”,使下列式子成立:,则ab= 17正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线yx2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是_18如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_(结果用含正整数的代数式表示)三、解答题(共66分)19(10分)解方

5、程:(1)x2+2x30;(2)x(x+1)2(x+1)20(6分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.21(6分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度(,结果精确到)22(8分)如图,已知抛物线与x轴交于点A、B,与y

6、轴分别交于点C,其中点,点,且.(1)求抛物线的解析式;(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.23(8分)已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C(1)求二次函数解析式;(2)若SAOBSBOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使BEF和CGE相似?若存在,请求出所有点E的坐标;若

7、不存在,请说明理由24(8分)在中,(1)如图,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点求证:;(2)在图中作,使它满足以下条件:圆心在边上;经过点;与边相切(尺规作图,只保留作图痕迹,不要求写出作法)25(10分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?26(10分)一个不透明的口袋中装有4个分别标有数1,2,3,

8、4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y)(1)小红摸出标有数3的小球的概率是 (2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果(3)求点P(x,y)在函数yx+5图象上的概率参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:ABC中,ABC=90,AB=6,BC=3,AB:BC=1A、当点E的坐标为(6,0)时,CDE=90,CD=1,DE=1,则AB:BC=CD:DE,CDEABC,故本选项不符合题意;B、当点E的坐标为(6,3)时

9、,CDE=90,CD=1,DE=1,则AB:BCCD:DE,CDE与ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,CDE=90,CD=1,DE=4,则AB:BC=DE:CD,EDCABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,ECD=90,CD=1,CE=1,则AB:BC=CD:CE,DCEABC,故本选项不符合题意故选B2、C【分析】根据相似三角形的判定定理、三角形的面积公式判断即可【详解】解:ABCD,AOBCOD,正确;ADO不一定等于BCO,AOD与ACB不一定相似,错误;,正确;ABD与ABC等高同底, ,正确;故选C.【点睛】本题主要考查了相似三角形

10、的判定与性质,掌握相似三角形的判定与性质是解题的关键.3、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c0,再结合B项的结论即可判断C项;由(1,0)与(2,0)关于抛物线的对称轴对称,可知当x=2时,y0,进而可判断D项.【详解】解:A、抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,a0,c0,0,b0,abc0,所以本选项错误;B、抛物线的对称轴为直线x,ab0,所以本选项错误;C、当x=1时,a+b+c0,且a=b,所以本选项错误;

11、D、(1,0)与(2,0)关于抛物线的对称轴对称,且当x=1时,y0,当x=2时,y0,即4a2b+c0,所以本选项正确.故选:D.【点睛】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键.4、D【解析】由题意根据中心对称图形的性质即图形旋转180与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可【详解】解:A旋转180,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B旋转180,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C旋转180,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D旋转180,能与原图形能够完全重合是

12、中心对称图形;故此选项正确;故选:D【点睛】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键5、B【分析】根据图象绕顶点旋转180,可得函数图象开口方向相反,顶点坐标相同,可得答案【详解】,该抛物线的顶点坐标是(1,3),在旋转之后的抛物线解析式为:故选:B【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180得到新函数的二次项的系数符号改变,顶点不变6、A【分析】设OAB的边长为2a,根据等边三角形的性质,可得点B的坐标为(-a,a),代入反比例函数解析式可得出a的值,继而得出OAB的周长【详解】解:如图,设OAB的边长为2a,

13、过B点作BMx轴于点M又OAB是等边三角形,OM=OA=a,BM=a,点B的坐标为(-a,a),点B是反比例函数y= 图象上的点,-aa=-8,解得a=2(负值舍去),OAB的周长为:32a=6a=12故选:A【点睛】此题考查反比例函数图象上点的坐标特征,等边三角形的性质,设OAB的边长为2a,用含a的代数式表示出点B的坐标是解题的关键7、D【解析】根据直角三角形两锐角互余求出,然后求出,再根据旋转的性质对应边的夹角即为旋转角【详解】解:,点、在同一条直线上,旋转角等于故选:D【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键8

14、、C【分析】先利用等腰三角形的性质和三角形内角和计算出AOB的度数,然后利用圆周角解答即可.【详解】解:OAOB,OBAOAB54,AOB180545472,ACBAOB36故答案为C【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.9、A【解析】二次函数的开口向下,所以在对称轴的左侧y随x的增大而增大二次函数的对称轴是,故选A10、D【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是

15、中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义二、填空题(每小题3分,共24分)11、【分析】先提取公因式,再利用平方差公式即可求解【详解】故答案为:【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法12、【分析】过点A作AHDE,垂足为H,由旋转的性质可得 AE=AD=6,CAE=BAD=15,DAE=BAC=90,再根据等腰直角三角形的性质可得HAE=45,AH=3,进而得HAF=30,继而求出AF长即可求得答案.【详解】过点A作AHDE,垂足为H,BAC=90,AB=AC,将ABD绕点A逆时

16、针方向旋转,使AB与AC重合,点D的对应点E,AE=AD=6,CAE=BAD=15,DAE=BAC=90,DE=,HAE=DAE=45,AH=DE=3,HAF=HAE-CAE=30,AF=,CF=AC-AF=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.13、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论【详解】解:如图:作OEAB于E,交CD于F,连接OA,OCAB=60cm,OEAB,且直径为100cm,OA=50cm,AE= OE=, 水管水面上升了

17、10cm,OF=40-10=030cm,CF=,CD=2CF=1cm故答案为:1【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键14、1【分析】由两角对应相等可得BADCED,利用对应边成比例即可得两岸间的大致距离AB的长【详解】解:ADB=EDC,ABC=ECD=90,ABDECD,即 ,解得:AB= =1(米)故答案为1【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例15、1或1【分析】设AC、交于点E,DC、交于点F,且设,则,列出方程即可解决问题【详解】设AC、交

18、于点E,DC、交于点F,且设,则,重叠部分的面积为,由,解得或1即或1故答案是1或1【点睛】本题考查了平移的性质、菱形的判定和正方形的性质综合,准确分析题意是解题的关键16、【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案:,。17、2+【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论【详解】点(0,1),四边形,均是正方形,点、和点、分别在抛物线和y轴上,(1,1),(0,2),(,2),(0,2+),点的纵坐标与点相同,点在二次函数的图象上,(,),即,故答

19、案为:2+【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键18、【解析】过点分别作轴,轴,轴,轴,轴,垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出即可求解.【详解】解:过点分别作轴,轴,轴,轴,轴,垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为: 点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为: 【点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.三、解答题(共66分)19

20、、(1)x13,x21;(2)x11,x22【分析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程【详解】(1)解一:(x+3)(x1)=0 解得:x1=3,x2=1解二:a=1,b=2,c=3 x= 解得:x= 即x1=3,x2=1 (2)x(x+1)2(x+1)=0(x+1)(x2)=0 x1=1,x2=2点睛: 本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式20、小岛,间的距离为米.【分析】根据三角函数的定义解直角三角形【详解】解:在中,由题可知,.在中,由题可知.,.答:

21、小岛,间的距离为米.【点睛】本题考查了利用三角函数解实际问题,注意三角函数的定义,别混淆21、(1)观众区的水平宽度为;(2)顶棚的处离地面的高度约为【分析】(1)利用坡度的性质进一步得出,然后据此求解即可;(2)作于,于,则四边形、为矩形,再利用三角函数进一步求出EN长度,然后进一步求出答案即可.【详解】(1)观众区的坡度为,顶端离水平地面的高度为,,,答:观众区的水平宽度为;(2)如图,作于,于,则四边形、为矩形,m,m,m,在中,则m,答:顶棚的处离地面的高度约为【点睛】本题主要考查了三角函数的实际应用,熟练掌握相关方法是解题关键.22、(1);(2)当时,S最大,此时;(3)或【分析】

22、(1)先根据射影定理求出点,设抛物线的解析式为:,将点代入求出,然后化为一般式即可;(2)过点P作y轴的平行线交BC于点E,设,用待定系数法分别求出直线BC,直线AC,直线PD的解析式,表示出点E,点D的坐标,然后根据三角形面积公式列出二次函数解析式,利用二次函数的性质求解即可;(3)分两种情况求解:当时和当时.【详解】(1),.,由射影定理可得:,点,设抛物线的解析式为:,将点代入上式得:,抛物线的解析式为:;(2)过点P作y轴的平行线交BC于点E,设,设,把,代入得,同样的方法可求,故可设,把代入得,联立解得:,故当时,S最大,此时;(3)由题知,当时,点C与点M关于对称轴对称,;当时,过

23、M作于F,过F作y轴的平行线,交x轴于G,交过M平行于x轴的直线于K,BFM=BGF,MFKFGB,同理可证:,设,则,代入,解得,或(舍去),故或.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的图像与性质,一次函数图像交点坐标与二元一次方程组解的关系,相似三角形的判定与性质,以及分类讨论的数学思想,难度较大,属中考压轴题.23、(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1-1)或E(2,-2 ) 【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连

24、接OB,OC,过点C作CDy轴于D,过点B作BEy轴于E,根据得到,由EBDC,对应线段成比例得到,再联立y=kx-4与y=x2-4x得到方程 kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1m4)则G(m,0)、F(m,m2-4m),根据题意分EFB=90和EBF=90,分别找到图形特点进行列式求解【详解】解:(1)二次函数y=x2+bx+c经过原点,c=0 当x=2时函数有最小值, b=-4,c=0,y=x2-4x;(2)如图,连接OB,OC,过点C作CD

25、y轴于D,过点B作BEy轴于E, EBDC y=kx-4交y=x2-4x于B、Ckx-4=x2-4x,即x2-(k+4)x+4=0,或xBxCEB=xB=,DC=xC=4=解得 k=-9(不符题意,舍去)或k=1k=1直线AC的解析式为y=x-4;(1)存在理由如下:由题意得EGC=90,直线AC的解析式为y=x-4A(0,-4 ) ,C(4,0)联立两函数得,解得或B(1,-1) 设E(m,m-4)(1m4) 则G(m,0)、F(m,m2-4m)如图,当EFB=90,即CG/BF时,BFECGE此时F点纵坐标与B点纵坐标相等F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1F(1,-

26、1)故此时E(1,-1)如图当EBF=90,FBECGE C(4,0),A(0 ,4 )OA=OC GCE=45=BEF=BFE过B点做BHEF, 则H(m,-1)BH=m-1又GCE=45=BEF=BFEBEF是等腰直角三角形,又BHEF EH=HF,EF=2BH(m-4)- (m2-4m) =2(m-1)解得m1=1(舍去)m2=2E(2,-2) 综上,E点坐标为E(1.-1)或E(2,-2)【点睛】此题主要考查二次函数的图像及几何综合,解题的关键是熟知二次函数的图像与性质、平行线分线段成比例、相似三角形及等腰三角形的性质24、(1)见解析(2)见解析【解析】(1)连接,可证得,结合平行线的性质和圆的特性可求得,可得出结论;(2)由(1)可知切点是的角平分线和的交点,圆心在的垂直平分线上,由此即可作出【详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论