




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1若抛物线经过点,则的值在( )A0和1之间B1和2之间C2和3之间D3和4之间2在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )ABCD3已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1x2),则下列判断正确的是( )
2、A2x1x23Bx123x2C2x13x2Dx12x234如图,的半径为5,的内接于,若,则的值为( )ABCD5如图,线段 OA=2,且OA与x轴的夹角为45,将点 A 绕坐标原点 O 逆时针旋转105后得到点,则的坐标为( )ABCD6若是方程的两根,则的值是( )ABCD7如图,两条直线被三条平行线所截,若,则()ABCD8某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A50cmB50cmC100cmD80cm9某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共
3、握了10次手求这次聚会的人数是多少?设这次聚会共有人,可列出的方程为( )ABCD10抛物线yx2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )Ay(x+1)2+3By(x+1)23Cy(x1)23Dy(x1)2+3二、填空题(每小题3分,共24分)11 “蜀南竹海位于宜宾市境内”是_事件;(填“确定”或“随机”)12在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_13如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_14如图,在矩形中,点分别在矩形
4、的各边上,则四边形的周长是_15已知,是抛物线上两点,该抛物线的解析式是_16经过点的反比例函数的解析式为_17已知两个数的差等于2,积等于15,则这两个数中较大的是 18如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,都是菱形,点A1,A2,A3,都在x轴上,点C1,C2,C3,都在直线yx+上,且C1OA1C2A1A2C3A2A360,OA11,则点C6的坐标是_三、解答题(共66分)19(10分)将矩形ABCD绕点A顺时针旋转(0360),得到矩形AEFG(1)如图,当点E在BD上时求证:FDCD;(2)当为何值时,GCGB?画出图形,并说明理由20(
5、6分)先化简,再求值:(1),其中a是方程x2+x20的解21(6分)综合与探究如图1,平面直角坐标系中,直线分别与轴、轴交于点,.双曲线与直线交于点.(1)求的值;(2)在图1中以线段为边作矩形,使顶点在第一象限、顶点在轴负半轴上.线段交轴于点.直接写出点,的坐标;(3)如图2,在(2)题的条件下,已知点是双曲线上的一个动点,过点作轴的平行线分别交线段,于点,.请从下列,两组题中任选一组题作答.我选择组题.A当四边形的面积为时,求点的坐标;在的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.B当四边形成为菱形时,求
6、点的坐标;在的条件下,连接,.坐标平面内是否存在点(不与点重合),使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由.22(8分)如图,在平面直角坐标系中,RtABC三个顶点都在格点上,点A、B、C的坐标分别为A(4,1),B(1,1),C(1,3),请解答下列问题:(1)画出ABC关于原点O的中心对称图形A1B1C1;(2)画出ABC关于y轴对称图形A2B2C2,则A2B2C2与A1B1C1的位置关系是 23(8分)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a
7、_;b_;c_;(2)填空:(填“甲”或“乙”)从平均数和中位数的角度来比较,成绩较好的是_;从平均数和众数的角度来比较,成绩较好的是_;成绩相对较稳定的是_24(8分)用配方法解方程:25(10分)已知关于的方程,其中是常数请用配方法解这个一元二次方程26(10分)如图所示,四边形ABCD中,ADBC,A90,BCD90,AB7,AD2,BC3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形参考答案一、选择题(每小题3分,共30分)1、D【分析】将点A代入抛物线表达式中,得到,根据进行判断【详解】抛物线经过点,的值在3和4之间,故选D【点睛】本题考查抛物线的表达式,无
8、理数的估计,熟知是解题的关键2、B【分析】根据轴对称图形与中心对称图形的概念判定即可【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形故答案为B【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键3、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2)
9、,y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-10,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.4、C【分析】连接OA、OB,作OHAB,利用垂径定理和勾股定理求出OH的长,再根据圆周角定理求出ACB=AOH,即可利用等角的余弦值相等求得结果.【详解】如图,连接OA、OB,作OHAB,AB=8
10、,OHAB,AH=AB=4,AOB=2AOH,OA=5,OH=,AOB=2ACB,ACB=AOH,=cosAOH=,故选:C.【点睛】此题考查圆的性质,垂径定理,勾股定理,三角函数,圆周角定理,利用圆周角定理求得ACB=AOH,由此利用等角的函数值相等解决问题.5、C【分析】如图所示,过作y轴于点B,作x轴于点C,根据旋转的性质得出,从而得出,利用锐角三角函数解出CO与OB即可解答【详解】解:如图所示,过作y轴于点B,作x轴于点C,由旋转可知,AO与x轴的夹角为45,AOB=45,故选:C【点睛】本题考查了旋转的性质以及解直角三角形,解题的关键是得出,并熟悉锐角三角函数的定义及应用6、D【解析
11、】试题分析:x1+x2=-=6,故选D考点: 根与系数的关系7、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,即,解得,故选:【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.8、A【分析】连接OA作弦心距,就可以构造成直角三角形设出半径弦心距也可以得到,利用勾股定理就可以求出了【详解】解:如图,过点O作于点C,边接AO,在中,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键9、D【分析】每个人都要和他自己以外的人握手一次
12、,但两个人之间只握手一次,所以等量关系为聚会人数(聚会人数-1)=总握手次数,把相关数值代入即可【详解】解:设参加这次聚会的同学共有x人,由题意得:,故选:D【点睛】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键10、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线yx2先向右平移1个单位得y(x1)2,再向上平移3个单位得y(x1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a0),确定其顶点坐标(h,k)
13、,在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”二、填空题(每小题3分,共24分)11、确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,12、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个
14、数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可能是503020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.13、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解【详解】连接,半径是5,根据勾股定理,因此弦的长是1【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键14、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解【详解】解:矩
15、形中,由勾股定理得:,EFAC,EHBD,EFHG,EHFG,四边形EFGH是平行四边形,四边形EFGH的周长=,故答案为:【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点15、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【详解】A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,代入得,解得:b=2,c=3,抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【点睛】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此
16、题的关键16、【分析】设出反比例函数解析式解析式,然后利用待定系数法列式求出k值,即可得解【详解】设反比例函数解析式为,则,解得:,此函数的解析式为故答案为:【点睛】本题考查了待定系数法求反比例函数解析式及特殊角的三角函数值,设出函数的表达式,然后把点的坐标代入求解即可,比较简单17、5【分析】设这两个数中的大数为x,则小数为x2,由题意建立方程求其解即可【详解】解:设这两个数中的大数为x,则小数为x2,由题意,得x(x2)=15,解得:x1=5,x2=3,这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用18、(47,)【分析】根据菱形的边长求得A1、A2、A3的坐标然后分别表示出
17、C1、C2、C3的坐标找出规律进而求得C6的坐标【详解】解:OA1=1,OC1=1,C1OA1C2A1A2C3A2A360,C1的纵坐标为:sim60. OC1,横坐标为cos60. OC1,C1,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,都是菱形,A1C2=2,A2C3=4,A3C4=8,C2的纵坐标为:sin60A1C2=,代入y求得横坐标为2,C2(2,),C3的纵坐标为:sin60A2C3=,代入y求得横坐标为5,C3(5,),C4(11,),C5(23,),C6(47,);故答案为(47,)【点睛】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根
18、据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键三、解答题(共66分)19、 (1)见解析;(2)见解析.【分析】(1)先运用SAS判定AEDFDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据DAG=60,即可得到旋转角的度数【详解】(1)由旋转可得,AEAB,AEFABCDAB90,EFBCAD,AEBABE,又ABE+EDA90AEB+DEF,EDADEF,又DEED,AEDFDE(SAS),DFAE,又AEABCD,CDDF;(2)如图,当GBGC时,点G在BC的垂直平分线上,
19、分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHBC,四边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60,旋转角60;当点G在AD左侧时,同理可得ADG是等边三角形,DAG60,旋转角36060300【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用20、, -.【分析】先求出程x2+x20的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:x2+x20,(x-1)(x+2)=0,x1=1,x2=-2,原
20、式,a是方程x2+x20的解,a1(没有意义舍去)或a2,则原式【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.21、(1);(2),;(3)A.,;B.,.【分析】(1)根据点在的图象上,求得的值,从而求得的值;(2)点在直线上易求得点的坐标,证得可求得点的坐标,证得即可求得点的坐标;(3)A.作轴,利用平行四边的面积公式先求得点的纵坐标,从而求得答案;分类讨论,画出相关图形,构造全等三角形结合轴对称的概念即可求解;B.作轴,根据菱形的性质结合相似三角形的性质先求得点的纵坐标,从而求得答案;分类讨论,画出相关图形,构造全等三角
21、形结合轴对称的概念即可求解;【详解】(1)在的图象上,点的坐标是 ,在的图象上,;(2)对于一次函数,当时,点的坐标是 ,当时,点的坐标是 ,在矩形中, , ,点的坐标是 ,矩形ABCD中,ABDG, 点的坐标是 ,故点,的坐标分别是: , , ;(3)A:过点作轴交轴于点,轴,四边形为平行四边形,的纵坐标为,点的坐标是 ,当时,如图1,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图2,过点作轴于,直线交 轴于,点的坐标是 ,点的坐标是 ,点的坐标是 ,当时,如图3,点与点关于轴对称,由轴对称的性质可得:点的坐标是;B:过点作轴于点, , ,四边形为菱形,轴,MEBO, , ,
22、, 的纵坐标为,点的坐标是;当时,如图4,点与点关于轴对称,由轴对称的性质可得:点的坐标是;当时,如图5,过点作轴于,直线交 轴于, 点的坐标是 ,点的坐标是 , ,点的坐标是 ,当时,如图6,点与点关于轴对称,由轴对称的性质可得:点的坐标是;【点睛】本题考查了反比例函数与一次函数的综合应用,运用待定系数法求反比例函数与一次函数的解析式,掌握函数图象上点的坐标特征和矩形、菱形的性质;会运用三角形全等的知识解决线段相等的问题;理解坐标与图形性质,综合性强,有一定的难度22、(1)作图见解析;(2)关于x轴对称【分析】(1)依据中心对称的性质,即可得到关于原点的中心对称图形;(2)依据轴对称的性质
23、,即可得到,进而根据图形位置得出与的位置关系【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求,A2B2C2与A1B1C1的位置关系是关于x轴对称故答案为:关于x轴对称【点睛】本题主要考查了利用旋转变换以及轴对称变换作图,掌握轴对称性的性质以及中心对称的性质是解决问题的关键23、(1)7,7.5,4.2;(2)乙,乙;甲【分析】(1)根据平均数、中位数、方差的定义分别计算即可解决问题;(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,从方差来看,乙的方差大于甲,所以甲的成绩相对较稳定.【详解】解:(l)a(5+26+47
24、+28+9)7(环),b(7+8)7.5(环),c (37)2+(47)2+(67)2+(87)2+(77)2+(87)2+(77)2+(87)2+(107)2+(97)24.2(环2);故答案为:7,7.5,4.2;(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,乙的方差大于甲从平均数和中位数的角度来比较,成绩较好的是:乙;从平均数和众数的角度来比较,成绩较好的是乙;成绩相对较稳定的是:甲故答案为:乙,乙,甲【点睛】本题考查了条形统计图、折线统计图、平均数、中位数、方差等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型24、x1=1+,x2=1-;【分析】先变形方程得到x2-2x+1=3,然后利用配方法求解;【详解】x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳春公务员考试题目及答案
- 信息与计算机考试题目及答案
- 秋天的图画教学设计
- 节能环保建筑工程电子合同签订与监管协议
- 婚后夫妻共同购车权益分割合同
- 智能建筑光伏逆变器租赁与智能电网接入服务合同
- 军婚涉外婚姻咨询与法律风险防范合同
- 保险理赔债务结算确认及赔付期限协议
- 新版gsp计算机培训试题及答案
- 股权激励计划实施与考核协议
- MT 181-1988煤矿井下用塑料管安全性能检验规范
- GB/T 193-2003普通螺纹直径与螺距系列
- 因纳特工商管理综合实训软件V4.00
- 四议两公开工作法课件
- 国有企业干部选拔任用条例
- 2022年保山数字产业发展有限责任公司招聘笔试题库及答案解析
- 通用造价35kV~750kV线路(国网)课件
- Unit 1 Lesson 1 Lifestyles 课件 高中英语新北师大版必修第一册(2022-2023学年)
- 村级组织权力清单、责任清单和负面清单x
- DB33∕T 715-2018 公路泡沫沥青冷再生路面设计与施工技术规范
- 高一化学第二学期期末考试试题
评论
0/150
提交评论