




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1在RtABC中,C=90,如果,那么的值是( )A90B60C45D302如图,点A,B,C在O上,A=36,C=28,则B=()A100B72C64D363如图,O的弦AB8,M是AB的中点,且OM3,则O的半径等于( )A8B4C10D54下列事件是随机事件的是()A打开电视,正在播放新闻B氢气在氧气
2、中燃烧生成水C离离原上草,一岁一枯荣D钝角三角形的内角和大于1805下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD6下列事件中,是随机事件的是( )A任意一个五边形的外角和等于540B通常情况下,将油滴入水中,油会浮在水面上C随意翻一本120页的书,翻到的页码是150D经过有交通信号灯的路口,遇到绿灯7下列方程中,是关于x的一元二次方程的为()ABCD8对于题目“抛物线l1:(1x2)与直线l2:ym(m为整数)只有一个交点,确定m的值”;甲的结果是m1或m2;乙的结果是m4,则()A只有甲的结果正确B只有乙的结果正确C甲、乙的结果合起来才正确D甲、乙的结果合起来也不正确9两个相
3、似多边形的面积比是916,其中小多边形的周长为36 cm,则较大多边形的周长为)A48 cmB54 cmC56 cmD64 cm10在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是( ).A3B4C6D8二、填空题(每小题3分,共24分)11如图,用一张半径为10 cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm,那么这张扇形纸板的弧长是_cm12一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了_道题13
4、如图,是的直径,是上一点,的平分线交于,且,则的长为_14如图,正方形的边长为,在边上分别取点,在边上分别取点,使依次规律继续下去,则正方形的面积为_15如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为_16掷一个质地均匀的正方体骰子,向上一面的点数为奇数的概率是_17如图,分别是正方形各边的中点,顺次连接,.向正方形区域随机投掷一点,则该点落在阴影部分的概率是_.18在菱形中,周长为,则其面积为_三、解答题(共66分)19(10分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘(1
5、)转动甲转盘,指针指向的数字小于3的概率是 ;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率20(6分)如图,在菱形ABCD中,对角线AC与BD交于点O过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是 21(6分)经过某十字路口的汽车,可能直行,也可能向左转或向右转如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同22(8分)已知:如图,在平面直角坐标系中,ABC是直角三角形,ACB90,点A,C的
6、坐标分别为A(3,0),C(1,0),tanBAC(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得ADB与ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动当一个点停止运动时,另一个点也随之停止运动设运动时间为t问是否存在这样的t使得APQ与ADB相似?如存在,请求出t的值;如不存在,请说明理由23(8分)如图,线段AB,A(2,3),B(5,3),抛物线y(x1)2m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点
7、,并求出此时抛物线的解析式及对称轴和项点坐标(2)设抛物线的顶点为P,m为何值时PCD的面积最大,最大面积是多少(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分24(8分)如图,在平面直角坐标系中,已知抛物线与直线都经过、两点,该抛物线的顶点为C(1)求此抛物线和直线的解析式;(2)设直线与该抛物线的对称轴交于点E,在射线上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线下方抛物线上的一动点,当面积最大时,求点P的坐标,并求面积的最大值25
8、(10分)为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为、类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图: 请根据图中信息回答下面的问题:(1)本次抽样调查了 户贫困户;(2)本次共抽查了 户类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?26(10分)如图,O是ABC的外接圆,圆心O在AB上,过点B作O的切线交AC的延长线于
9、点D(1)求证:ABCBDC(2)若AC=8,BC=6,求BDC的面积参考答案一、选择题(每小题3分,共30分)1、C【分析】根据锐角三角函数的定义解得即可【详解】解:由已知, C=90=45故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解2、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:O=2A=72,根据C=28可得:ODC=80,则ADB=80,则B=180-A-ADB=180-36-80=64,故本题选C3、D【详解】解:OMAB,AM=AB=4,由勾股定理得:OA=5;故选D4、A【分析】根据随机事件
10、的意义,事件发生的可能性大小判断即可【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180,是不可能事件;故选:A【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.5、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A是轴对称图形,不是中心对称图形,故本选项不符合题意;B是轴对称图形,也是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【
11、点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、D【分析】根据随机事件的定义,逐一判断选项,即可得到答案【详解】任意一个五边形的外角和等于540,是必然事件,A不符合题意,通常情况下,将油滴入水中,油会浮在水面上,是必然事件,B不符合题意,随意翻一本120页的书,翻到的页码是150,是不等能事件,C不符合题意,经过有交通信号灯的路口,遇到绿灯,是随机事件,D符合题意,故选D【点睛】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键7、B【解析】根据一元二
12、次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(1)未知数的最高次数是1;(3)是整式方程要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为ax1bxc0(a0)的形式,则这个方程就为一元二次方程【详解】解:A.,是分式方程,B.,正确,C.,是二元二次方程,D.,是关于y的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; 只含有一个未知数; 未知数的最高次数是18、C【分析】画出抛物线l1:y(x1)2+4(1x2
13、)的图象,根据图象即可判断【详解】解:由抛物线l1:y(x1)2+4(1x2)可知抛物线开口向下,对称轴为直线x1,顶点为(1,4),如图所示:m为整数,由图象可知,当m1或m2或m4时,抛物线l1:y(x1)2+4(1x2)与直线l2:ym(m为整数)只有一个交点,甲、乙的结果合在一起正确,故选:C【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键9、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1相似多边形周长的
14、比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2大多边形的周长为2cm故选A考点:相似多边形的性质10、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=二、填空题(每小题3分,共24分)11、【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解【详解】解:扇形的半径为10cm,做成的圆锥形帽子的高为8cm,圆锥的底面半径为cm,底面周长为2612cm,即这张扇形纸板的弧长是12cm,故答案
15、为:12【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长侧面展开扇形的弧长12、1【分析】设小聪答对了x道题,根据“答对题数5答错题数280分”列出不等式,解之可得【详解】设小聪答对了x道题,根据题意,得:5x2(19x)80,解得x16,x为整数,x1,即小聪至少答对了1道题,故答案为:1【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系因此,建立不等式要善于从“关键词”中挖掘其内涵13、【分析】连接OD,由AB是直径,得ACB=90,由角平分线的性质和圆周角定理,得到AOD是等腰直角三角形,根据勾股
16、定理,即可求出AD的长度.【详解】解:连接OD,如图,是的直径,ACB=90,AO=DO=,CD平分ACB,ACD=45,AOD=90,AOD是等腰直角三角形,;故答案为:.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.14、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面积,同理可求出正方形A2B2C2D2的面积,得出规律即可得答案【详解】正方形ABCD的边长为a,A1B12=A1B2+BB12=a2,A1B1=a,正方形A1B1C1D1的面积为a2,A2B22=()2a2,正方形A2B2C
17、2D2的面积为()2a2,正方形的面积为()na2,故答案为:()na2【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键15、3或【解析】分两种情况:与直线CD相切、与直线AD相切,分别画出图形进行求解即可得.【详解】如图1中,当与直线CD相切时,设,在中,;如图2中当与直线AD相切时,设切点为K,连接PK,则,四边形PKDC是矩形,在中,综上所述,BP的长为3或【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键16、 【解析】解:掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率
18、为:故答案为17、【分析】根据三角形中位线定理判定阴影部分是正方形,然后按照概率的计算公式进行求解.【详解】解:连接AC,BD,分别是正方形各边的中点,HEF=90阴影部分是正方形设正方形边长为a,则向正方形区域随机投掷一点,则该点落在阴影部分的概率是 故答案为:【点睛】本题考查三角形中位线定理及正方形的性质和判定以及概率的计算,掌握相关性质定理正确推理论证是本题的解题关键.18、8【分析】根据已知求得菱形的边长,再根据含的直角三角形的性质求出菱形的高,从而可求菱形的面积【详解】解:如图,作AEBC于E,菱形的周长为,AB=BC=4,,AE= =2,菱形的面积= .故答案是:8.【点睛】此题主
19、要考查了菱形的性质,利用含的直角三角形的性质求出菱形的高是解题的关键三、解答题(共66分)19、(1);(2) 【解析】(1)根据甲盘中的数字,可判断求出概率;(2)列出符合条件的所有可能,然后确定符合条件的可能,求出概率即可.【详解】(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,P(转动甲转盘,指针指向的数字小于3)=,故答案为(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P=20、(1)证明见解析;(2)1【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有
20、一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答【详解】(1)四边形ABCD是菱形,ACBD,COD=90CEOD,DEOC,四边形OCED是平行四边形,又COD=90,平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2四边形ABCD是菱形,AC=2OC=1,BD=2OD=2,菱形ABCD的面积为:ACBD=12=1,故答案为1【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.21、(1);(2)【分析】此题可以采用列表法求解可以得到一共有9种情况,两辆车中恰有一辆车向左
21、转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可【详解】解:列表得:左直右左左左左直左右直左直直直直右右左右直右右右共有9种等可能结果,其中,两辆车中恰有一辆车向左转的有4种情况;两辆车行驶方向相同有3种情况(1)P(两辆车中恰有一辆车向左转)=; (2)P(两辆车行驶方向相同)=【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件解题时注意看清题目的要求,要按要求解题概率=所求情况数与总情况数之比22、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当ts或s时,APQ与ADB相似【分
22、析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据ABCADB,得到=,代入计算求出AD,得到点D的坐标;(3)分APQABD、AQPABD两种情况,根据相似三角形的性质列式计算即可【详解】解:(1)A(3,0),C(1,0),AC4,ACB90,tanBAC,即,解得,BC3,点B的坐标为(1,3);(2)如图1,作BDBA交x轴于点D,则ACBABD90,又AA,ABCADB,在RtABC中,AB5,解得,AD,则ODADAO,点D的坐标为(,0);(3)存在,由题意得,AP2t,AQt,当PQAB时,PQBD,APQABD,即,解得,t,当PQAD时,AQPABD,AA,AQP
23、ABD,即,解得,t,综上所述,当ts或s时,APQ与ADB相似【点睛】本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键23、(1)当m0或m2时,抛物线过原点,此时抛物线的解析式是y(x1)2+1,对称轴为直线x1,顶点为(1,1);(2)m为1时PCD的面积最大,最大面积是2;(3)nm22m+6或nm22m+1【分析】(1)根据抛物线过原点和题目中的函数解析式可以求得m的值,并求出此时抛物线的解析式及对称轴和项点坐标;(2)根据题目中的函数解析式和二次函数的性质,可以求得m为何值时PCD的面积最大,求得点C、D的坐标,由此求出PCD的面积
24、最大值;(3)根据题意抛物线能把线段AB分成1:2,存在两种情况,求出两种情况下线段AB与抛物线的交点,即可得到当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分【详解】(1)当y(x1)2m2+2m+1过原点(0,0)时,01m2+2m+1,得m10,m22,当m10时,y(x1)2+1,当m22时,y(x1)2+1,由上可得,当m0或m2时,抛物线过原点,此时抛物线的解析式是y(x1)2+1,对称轴为直线x1,顶点为(1,1);(2)抛物线y(x1)2m2+2m+1,该抛物线的顶点P为(1,m2+2m+1),当m2+2m+1最大时,PCD的面积最大,m2+2m+1(m1)2+2,当
25、m1时,m2+2m+1最大为2,y(x1)2+2,当y0时,0(x1)2+2,得x11+,x21,点C的坐标为(1,0),点D的坐标为(1+,0)CD(1+)(1)2,SPCD2,即m为1时PCD的面积最大,最大面积是2;(3)将线段AB沿y轴向下平移n个单位A(2,3n),B(5,3n)当线段AB分成1:2两部分,则点(3,3n)或(4,3n)在该抛物线解析式上,把(3,3n)代入抛物线解析式得,3n(31)2m2+3m+1,得nm22m+6;把(4,3n)代入抛物线解析式,得3n(31)2m2+3m+1,得nm22m+1;nm22m+6或nm22m+1【点睛】此题是二次函数的综合题,考查抛
26、物线的对称轴、顶点坐标,最大值的计算,(3)是题中的难点,由图象向下平移得到点的坐标,再将点的坐标代入解析式,即可确定m与n的关系.24、(1)抛物线的解析式为,直线的解析式为,(2)或(3)当时,面积的最大值是,此时P点坐标为【解析】(1)将、两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则,分两种情况讨论:若点M在x轴下方,四边形为平行四边形,则,若点M在x轴上方,四边形为平行四边形,则,设,则,可分别得到方程求出点M的坐标;(3)如图,作轴交直线于点G,设,则,可由,得到m的表达式,利用二次函数求最值问题配方即可【详解】解:(1)抛物线经过、两点,抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《开学第一课》观后感写作指导附范文
- 电瓶车上路知识培训总结课件
- 北京通州流管员考试题及答案
- Zotepine-d6-生命科学试剂-MCE
- 北大物理卓越考试试题及答案
- 康熙元年考试题目及答案
- 乐谱制作考试题及答案
- 电热保险丝知识培训内容课件
- 保定初中中考考试题型及答案
- 蚌埠市科目一考试试卷及答案
- 房地产样板间装饰工程重点难点及措施
- 康复科护理金点子
- 工地油库安全管理办法
- 全球治理转型-洞察及研究
- 高等数学课程教学中遇到的问题及解决对策
- (高清版)DB32∕T 4001-2025 公共机构能耗定额及计算方法
- 电力物资打包方案(3篇)
- 2025至2030中国味精行业发展趋势分析与未来投资战略咨询研究报告
- 保险执业登记管理制度
- 你的样子就是教育的样子-一位校长对教师行为规范的深度思考建议收藏
- 中医治疗泌尿系结石课件
评论
0/150
提交评论