四川省成都高新区四校联考2023学年数学九年级第一学期期末经典试题含解析_第1页
四川省成都高新区四校联考2023学年数学九年级第一学期期末经典试题含解析_第2页
四川省成都高新区四校联考2023学年数学九年级第一学期期末经典试题含解析_第3页
四川省成都高新区四校联考2023学年数学九年级第一学期期末经典试题含解析_第4页
四川省成都高新区四校联考2023学年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.62如图,在ABC中,D、E分别是AB、AC上的点,DEBC,且AD2,AB3,AE4,则AC等于()A5B6C7D83一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表

2、示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )ABCD4下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接与相切于点,是的直径,(直径所对的圆周角是90),.,(同弧所对的相等),下列选项中,回答正确的是( )A代表B代表C代表D代表圆心角5随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A90万元B450万元C3万元D15万元6下列事件中,是随机事件的是( )A画一个三角形,其内角和是180B在只装了红色卡片的袋子里,摸出一

3、张白色卡片C投掷一枚正六面体骰子,朝上一面的点数小于7D在一副扑克牌中抽出一张,抽出的牌是黑桃67若反比例函数的图象经过,则这个函数的图象一定过( )ABCD8若x1,x2是一元二次方程5x2+x50的两根,则x1+x2的值是()ABC1D19下列说法中,正确的是()A不可能事件发生的概率为0B随机事件发生的概率为C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次10如图,在平面直角坐标系中,直线OA过点(4,2),则的值是( )ABCD211当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函

4、数关系式可能是() V(单位:m3)11.522.53P(单位:kPa)96644838.432AP96VBP16V+112CP16V296V+176DP12下列说法正确的是( )A若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B可能性很大的事件在一次试验中必然会发生C相等的圆心角所对的弧相等是随机事件D掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等二、填空题(每题4分,共24分)13如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,为顶点的三角形与ABP相似,则满足此条件的点的坐标为_14在R

5、tABC中,ACB90,若tanA3,AB,则BC_15一元二次方程(x5)(x7)0的解为_16已知m,n是一元二次方程的两根,则_.17如图,在网格中,小正方形的边长均为1,点,都在格点上,则_.18如图,四边形ABCD内接于O,ADBC,直线EF是O的切线,B是切点若C80,ADB54,则CBF_三、解答题(共78分)19(8分)如图,抛物线(a0)经过A(-1,0),B(2,0)两点,与y轴交于点C(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当ACP的周长最小时,求出点P的坐标;(3) 点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的RtDNM

6、与RtBOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由20(8分)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0 x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)21(8分)如图,内接于,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接.(1)求证:是的切线;(2)求证:.2

7、2(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE23(10分)如图,在ABC中,ABAC,以AB为直径的O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F(1)求证:;(2)过点C作CGBF于G,若AB5,BC2,求CG,FG的长24(10分)如图1,矩形ABCD中,AD2,AB3,点E,F分别在边AB,BC上,且BFFC,连接DE,EF,并以DE,EF为边作DEFG(1)连接DF,求DF的长度;(2)求DEFG周长的最小值;(3)当DEFG为正方形时(如图2),连接BG,分别

8、交EF,CD于点P、Q,求BP:QG的值25(12分)平面直角坐标系中,函数(x0),y=x-1,y=x-4的图象如图所示,p(a , b)是直线上一动点,且在第一象限.过P作PMx轴交直线于M,过P作PNy轴交曲线于N.(1)当PM=PN时,求P点坐标(2)当PM PN时,直接写出a的取值范围.26如图,AB是O 的直径,CD是O的一条弦,且CDAB于点E(1)求证:BCO=D;(2)若CD=,AE=2,求O的半径参考答案一、选择题(每题4分,共48分)1、A【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是

9、等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB2、B【分析】根据平行线分线段成比例定理列出比例式,计算即可【详解】DEBC,AC6,故选:B【点睛】本题考查的是平行线分线段成比例定理,难度系数不高,解题关键是找准对应线段.3、D【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D考点:1由三视图判断几何体;2作图-三视图4、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可【详解】解:由证明过程可知:A:代

10、表AE,故选项错误;B:由同角的余角相等可知:代表,故选项正确;C和D:由同弧所对的圆周角相等可得代表E,代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键5、A【解析】所以4月份营业额约为33090(万元)6、D【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】A. 画一个三角形,其内角和是180,是必然事件,故不符合题意;B. 在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C. 投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D. 在一副扑克牌中抽出一张,抽出的牌是

11、黑桃6,是随机事件,故符合题意;故选:D【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、A【分析】通过已知条件求出,即函数解析式为,然后将选项逐个代入验证即可得.【详解】由题意将代入函数解析式得,解得,故函数解析式为,将每个选项代入函数解析式可得,只有选项A的符合,故答案为A.【点睛】本题考查了已知函数图象经过某点,利用代入法求系数,再根据函数解析式分析是否经过所给的点.8、B【分析】利用计算即可求解【详解】根

12、据题意得x1+x2故选:B【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.9、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A考点:随机事件10、A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题【详解】如图:过点(4,2)作直线CDx轴交OA于点C,交x轴于点D,在平面直角坐标系中,直线OA过点(4,2),OD=4,CD=2,tan=,

13、故选A【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答11、D【解析】试题解析:观察发现: 故P与V的函数关系式为 故选D.点睛:观察表格发现 从而确定两个变量之间的关系即可12、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上

14、的概率和钉尖着地的概率不相同,所以该选项错误;故选:C【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键二、填空题(每题4分,共24分)13、或【分析】求出直线l的解析式,证出AOBPCA,得出,设AC=m(m0),则PC=2m,根据PCAPDA,得出 ,当PADPBA时,根据,得出m=2,从而求出P点的坐标为(4,4)、(0,-4),若PADBPA,得出,求出,从而得出,求出,即可得出P点的坐标为【详解】点A(2,0),点B(0,1),直线AB的解析式为y=-x+1直线l过点A(4,0),且lAB,直线l的解析式为;y=2x-4,BAO+PAC=

15、90,PCx轴,PAC+APC=90,BAO=APC,AOB=ACP,AOBPCA,设AC=m(m0),则PC=2m,PCAPDA,AC=AD,PC=PD,如图1:当PADPBA时,则,则,AB=,AP=2,m=2,(负失去)m=2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),如图2,若PADBPA,则,则,m=,(负舍去)m=,当m=时,PC=1,OC=,P点的坐标为(,1),故答案为:P(4,4),P(,1)【点睛】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点14、1【分析】

16、由tanA1可设BC1x,则ACx,依据勾股定理列方程求解可得【详解】在RtABC中,tanA1,设BC1x,则ACx,由BC2+AC2AB2可得9x2+x210,解得:x1(负值舍去),则BC1,故答案为:1【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键15、x15,x27【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x5)(x7)0,可得x50或x70,解得:x15,x27,故答案为:x15,x27.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键16、-1【分析】根据根与系数的关系求出m

17、+n与mn的值,然后代入计算即可.【详解】m,n是一元二次方程的两根,m+n=2,mn=-3,2-3=-1.故答案为:-1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .17、【分析】连接AC,根据网格特点和正方形的性质得到BAC90,根据勾股定理求出AC、AB,根据正切的定义计算即可【详解】连接AC,由网格特点和正方形的性质可知,BAC90,根据勾股定理得,AC,AB2,则tanABC,故答案为:【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余

18、弦为邻边比斜边,正切为对边比邻边18、46【分析】连接OB,OC,根据切线的性质可知OBF=90,根据ADBC,可得DBC=ADB54,然后利用三角形内角和求得BDC=46,然后利用同弧所对的圆心角是圆周角的2倍,求得BOC=92,然后利用等腰三角形的性质求得OBC的度数,从而使问题得解.【详解】解:连接OB,OC,直线EF是O的切线,B是切点OBF=90ADBCDBC=ADB54又DCB80BDC=180-DBC -DCB=46BOC=2BDC =92又OB=OCOBC= CBFOBF-OBC=90-44=46故答案为:46【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据

19、题意添加辅助线正确推理论证是本题的解题关键.三、解答题(共78分)19、(1),D(,);(2)P(,);(3)存在N(,)或(,)或(,)或(,)【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tanMDN=2或,建立关于点N的横坐标的方程,求出即可试题解析:(1)由于抛物线 (a0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入 (a0),可得:;解方程组可得:,故抛物线的解析式为:,=,所以D的坐标为(,)(2)如图1,设P(,k),C(0,1),A

20、(-1,0),B(2,0),A、B两点关于对称轴对称,连接CB交对称轴于点P,则ACP的周长最小设直线BC为y=kx+b,则:,解得:,直线BC为:当x=时,=,P(,);(3)存在如图2,过点作NFDM,B(2,0),C(0,1),OB=2,OC=1,tanOBC=,tanOCB=2,设点N(m,),FN=|m|,FD=|=|,RtDNM与RtBOC相似,MDN=OBC,或MDN=OCB;当MDN=OBC时,tanMDN=,m=(舍)或m=或m=,N(,)或(,);当MDN=OCB时,tanMDN=2,m=(舍)或m=或m=,N(,)或(,);符合条件的点N的坐标(,)或(,)或(,)或(,

21、)考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题20、(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用

22、二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=

23、1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0 x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题21、(1)详见解析;(2)详见解析.【分析】(1)根据圆的对称性即可求出答案;(2)先证明BCDBDF

24、,利用相似三角形的性质可知:,利用BC=AC即可求证=ACBF;【详解】解:(1),平分,是圆的直径ABEF,是圆的半径,是的切线;(2),.【点睛】本题主要考查了圆周角定理,切线的判定与性质,相似三角形的判定与性质,掌握圆周角定理,切线的判定与性质,相似三角形的判定与性质是解题的关键.22、(1)见解析;(2)见解析.【分析】(1)由DAC=DCA,对顶角AED=BEC,可证BCEADE(2)根据相似三角形判定得出ADEBDA,进而得出BCEBDA,利用相似三角形的性质解答即可【详解】证明:(1)AD=DC,DAC=DCA,DC2=DEDB,=,CDE=BDC,CDEBDC,DCE=DBC,

25、DAE=EBC,AED=BEC,BCEADE,(2)DC2=DEDB,AD=DCAD2=DEDB,同法可得ADEBDA,DAE=ABD=EBC,BCEADE,ADE=BCE,BCEBDA,=,ABBC=BDBE【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解23、(1)见解析;(2)CF,FG,【分析】(1)连接AE,利用等腰三角形的三线合一的性质证明EABEAC即可解决问题(2)证明BCGABE,可得,由此求出CG,再利用平行线分线段成比例定理求出CF,利用勾股定理即可求出FG【详解】(1)证明:连接AEAB是直径,AEB90,AEBC,ABAC,E

26、ABEAC,(2)解:BFAB,CGBF,AEBCCGBAEBABF90,CBG+ABC90,ABC+BAE90,CBGBAE,BCGABE,CG2,CGAB,CF,FG【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、等腰三角形的性质、相似三角形的判定与性质.24、(1);(2)6;(3)或 【分析】(1)平行四边形DEFG对角线DF的长就是RtDCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EFDM时有最小值,在RtDM

27、C中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解【详解】解:(1)如图1所示:四边形ABCD是矩形,C90,ADBC,ABDC,BFFC,AD2;FC1,AB3;DC3,在RtDCF中,由勾股定理得,DF;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,当点E不与点N重合时点M、E、D可构成一个三角形,ME+DEMD,当点E与点N重合时点M、E(N)、D在同一条直线上,ME+DEMD由和DE+EF的值最小时就是点E与点N重合时,MBBF,MB1,MC3,又DC3,MCD是等腰直角三角形,MD3,NF+DNMD3,l平行四边形DEFG2(NF+DF)6;(3)设AEx,则BE3x,平行四边形DEFG为矩形,DEF90,AED+BEF90,BEF+BFE90,AEDBFE,又AEBF90,DAEEBF,解得:x1,或x2当AE1,BE2时,过点B作BHEF,如图3(甲)所示:平行四边形DEFG为矩形,AABF90,又BF1,AD2,在ADE和BEF中,ADEBEF中(SAS),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论