版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验
2、,得到两个品种每亩产量的两组数据,其方差分别为,则 ( )A甲比乙的产量稳定B乙比甲的产量稳定C甲、乙的产量一样稳定D无法确定哪一品种的产量更稳定2如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是 ( )A小明:“早上8点”B小亮:“中午12点”C小刚:“下午5点”D小红:“什么时间都行”3在RtABC中,C90,若BC3,AC4,则sinB的值为()ABCD4下面的图形中,是轴对称图形但不是中心对称图形的是()ABCD5反比例函数的图象位于( )A第一、三象限B第二、四象限C第二、三象限D第一、二象限6在平面直角坐标系中,将二次函数
3、y=3的图象向左平移2个单位,所得图象的解析式为( )Ay=32By=3+2Cy=3Dy=37如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是( )ABCD8抛物线y=2x2,y=2x2,y=2x2+1共有的性质是()A开口向上B对称轴都是y轴C都有最高点D顶点都是原点9下列计算错误的是( )ABCD10如图,DEBC,BD,CE相交于O,则( )A6B9C12D15二、填空题(每小题3分,共24分)11在、1、2五个数中,若随机取一个数作为反比例函数中的值,则该函数图象在第二、第四象限的概率是_12关于的方程一个根是1,则它的另一个根为_13若为一元二次方程的一个根,则_14如
4、图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为_米15已知是方程的一个根,则方程另一个根是_.16若是一元二次方程的两个根,则_17要使二次根式有意义,则的取值范围是_18如图,在的同侧,点为的中点,若,则的最大值是_三、解答题(共66分)19(10分)甲、乙两人用如图所示的转盘(每个转盘被分成面积相等的6个扇形)做游戏,转动转盘停止时,得到指针所在区域的数字,若指针落在分界线上,则不计入次数,重新转动转盘记数(1)任意转动转盘一次,求指针落在奇数区域的概率;(2)若游戏规则如
5、下:甲乙分别转盘一次,记下两次指针所在区域数字,若两次的数字为一奇一偶,则甲赢;若两次的数字同为奇数或同为偶数,则乙赢请用列表法或画树状图的方法计算甲、乙获胜的概率,并说明这个游戏规则是否公平20(6分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图和图两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21(6分)如图,在中,是的平分线,是上一点,以为半径的经过点(1)求证:是切线;(2)若,求的长22(
6、8分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1从这3个口袋中各随机地取出1个小球(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率23(8分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1从这3个口袋中各随机地取出1个小球(1)取出的3个小球上恰好有两个偶数的概率是多少
7、?(2)取出的3个小球上全是奇数的概率是多少?24(8分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、. (1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧). 将绕点顺时针旋转至. 抛物线的对称轴上有动点,坐标系内是否存在一点,使得以、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.25(10分)如图,在中,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点(1)求证:四边形是菱形;(2)若,求
8、的长26(10分)如图,在平面直角坐标系中,的顶点坐标分别为, ,(1)的面积是_;(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;(3)若为线段上的任一点,则变换后点的对应点的坐标为 _参考答案一、选择题(每小题3分,共30分)1、B【分析】由,可得到,根据方差的意义得到乙的波动小,比较稳定【详解】,乙比甲的产量稳定故选:B【点睛】本题考查了方差的意义:方差反映一组数据在其平均数左右的波动大小,方差越大,波动就越大,越不稳定,方差越小,波动越小,越稳定2、C【解析】可根据平行投影的特点分析求解,或根据常识直接确定答案解:根据题意:影子在物体的东方,根
9、据北半球,从早晨到傍晚影子的指向是:西-西北-北-东北-东,可得应该是下午故选C本题考查了平行投影的特点和规律在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长3、A【分析】根据三角函数的定义解决问题即可【详解】解:如图,在RtABC中,C90,BC3,AC4,AB,sinB故选:A【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型4、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A. 不是轴对称图形,是中心
10、对称图形,故此选项错误;B. 不是轴对称图形,是中心对称图形,故此选项错误;C. 是轴对称图形,也是中心对称图形,故此选项错误;D. 是轴对称图形,不是中心对称图形,故此选项正确故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.5、B【解析】根据反比例函数的比例系数来判断图象所在的象限,k0,位于一、三象限,k0,位于二、四象限【详解】解:反比例函数的比例系数-60,函数图象过二、四象限故选:B【点睛】本题考查的知识点是反比例函数的图象及其性质,熟记比例系数与图象位置的关系是解此题的关键6、D【分析】先确定抛物线y=3x1的顶点坐标为(0,0),再根据点平移的规律得
11、到点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),然后利用顶点式写出新抛物线解析式即可【详解】解:抛物线y=3x1的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(-1,0),平移后的抛物线解析式为:y=3(x+1)1故选:D【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式7、A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边
12、第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图8、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1)故选B9、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A: ,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据 ,进行判断.10、A【解析】试题分析:因为DEBC,所以,
13、因为AE=3,所以AB=9,所以EB=9-3=1故选A考点:平行线分线段成比例定理二、填空题(每小题3分,共24分)11、【分析】根据反比例函数的图象在第二、第四象限得出,最后利用概率公式进行求解【详解】反比例函数的图象在第二、第四象限,该函数图象在第二、第四象限的概率是,故答案为:【点睛】本题考查了反比例函数的图象,等可能情况下的概率计算公式,熟练掌握反比例函数图象的特征与概率公式是解题的关键12、1【分析】利用一元二次方程根与系数的关系 ,即可得出答案【详解】由一元二次方程根与系数的关系可知,关于的方程一个根是1,它的另一个根为1,故答案为:1【点睛】本题主要考查一元二次方程根与系数的关系
14、,掌握一元二次方程根与系数的关系是解题的关键13、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:为一元二次方程的一个根,解得:m=2.故答案为:2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.14、2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解【详解】解:根据题意可知当小颖在BG处时,即 AP=6当小颖在DH处时, ,即 DE=2故答案为:2【点睛】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似
15、三角形对应边相等15、1【分析】设方程另一个根为x1,根据根与系数的关系得到-1x1=-1,然后解一次方程即可【详解】设方程另一个根为x1,根据题意得-1x1=-1,所以x1=1故答案为1【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=-,x1x2=16、1【分析】根据韦达定理可得,将整理得到,代入即可【详解】解:是一元二次方程的两个根,故答案为:1【点睛】本题考查韦达定理,掌握,是解题的关键17、x1【分析】根据二次根式被开方数为非负数进行求解【详解】由题意知,解得,x1,故答案为:x1【点睛】本题考查二次根式有意义的条件,二次根
16、式中的被开方数是非负数18、14【分析】如图,作点A关于CM的对称点A,点B关于DM的对称点B,证明AMB为等边三角形,即可解决问题【详解】解:如图,作点关于的对称点,点关于的对称点,为等边三角形,的最大值为,故答案为【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题三、解答题(共66分)19、(1);(2)游戏规则公平,理由详见解析【分析】(1)直接根据概率公式求解即可得出答案;(2)根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案【详解】解:(1)P(指针落在奇数区域)
17、= (2)列表如下:(画树形图评分方案同列表)1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知,P(甲获胜)=P(一奇一偶)=,P(乙获胜)=P(同奇或同偶)=, P(甲获胜)= P(乙获胜)=, 所以,游戏规则公平【点睛】本题考查的是游戏公平性的判断判断
18、游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比20、(1)B班参赛作品有25件;(2)补图见解析;(3)C班的获奖率高.【分析】(1)直接利用扇形统计图中百分数,求出B班所占的百分比,进而求出B班参赛作品数;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B班参赛作品有;(2)C班参赛作品获奖数量为,补图如下:;(3)A班的获奖率为 ,B班的获奖率为,C班的获奖率为50%,D班的获奖率为,故C班的获奖率高.21、(1)证明
19、见解析;(2)【分析】(1)如图,连接OD欲证BC是O切线,只需证明ODBC即可(2)过点D作DEAB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过设未知数利用勾股定理得出AC的长【详解】(1)证明:如解图1所示,连接平分,是的切线;(2)如解图2,过作于,又平分,在中,由勾股定理,得,设,则,在中,则由勾股定理,得:,解得:,的长为【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可同时考查了角平分线的性质,勾股定理22、解:(1);(2)【分析】(1)根据题意画出树状图,根据树状图进行解答概率;
20、(2)用列举法求概率【详解】解:(1)画树状图得一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,取出的3个小球的标号全是奇数的概率是:P(全是奇数)= (2)这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,这些线段能构成三角形的概率为P(能构成三角形)= 【点睛】本题考查概率的计算,难度不大23、 (1);(2).【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可; (2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,
21、画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以(两个偶数);(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,(三个奇数).【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比24、(1);(1)存在,理由见解析;,【分析】(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQy轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作
22、P关于y轴的对称点P1(-2,6),作P关于x轴的对称点P1(2,-6),的周长最小,其周长等于线段的长,由此即可解决问题(1)首先求出平移后的抛物线的解析式,确定点H,点C的坐标,分三种情形,当OC=CS时,可得菱形OCS1K1,菱形OCS1K1当OC=OS时,可得菱形OCK3S3,菱形OCK2S2当OC是菱形的对角线时,分别求解即可解决问题【详解】解:(1)如图,过点作轴平行线,交线段于点, 设,=-(m1-2)1+2,m=2时,PBC的面积最大,此时P(2,6) 作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,此时的周长最小,其周长等于线段的长;,. (1)如图,E(0,-2)
23、,平移后的抛物线经过E,B,抛物线的解析式为y=-x1+bx-2,把B(8,0)代入得到b=2,平移后的抛物线的解析式为y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,H(1,0),CHB绕点H顺时针旋转90至CHB,C(6,1),当OC=CS时,可得菱形OCS1K1,菱形OCS1K1,OC=CS=1,可得S1(5,1-),S1(5,1+),点C向左平移一个单位,向下平移得到S1,点O向左平移一个单位,向下平移个单位得到K1,K1(-1,-),同法可得K1(-1,),当OC=OS时,可得菱形OCK3S3,菱形OCK2S2,同法可得K3(11,1-),K2(11,1+),当OC是菱形的对角线时,设S5(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年饮料及冷饮服务项目合作计划书
- 门诊护理礼仪与情绪管理
- VSD护理质量控制标准
- 自考护理本科护理伦理与法律
- 帕金森病护理团队协作模式探讨
- 告别外号烦恼课件
- 贴面护理的艺术之美
- 护理管理与团队协作
- 早产儿家庭护理环境布置
- 单器官血管炎的护理
- 数字化转型赋能高校课程思政的实施进路与评价创新
- 捷盟-03-京唐港组织设计与岗位管理方案0528-定稿
- 基于SystemView的数字通信仿真课程设计
- 物业二次装修管理规定
- GB 10133-2014食品安全国家标准水产调味品
- FZ/T 92023-2017棉纺环锭细纱锭子
- 采气工程课件
- 非洲猪瘟实验室诊断电子教案课件
- 工时的记录表
- 金属材料与热处理全套ppt课件完整版教程
- 热拌沥青混合料路面施工机械配置计算(含表格)
评论
0/150
提交评论