2023学年北京海淀十一学校数学九年级第一学期期末调研试题含解析_第1页
2023学年北京海淀十一学校数学九年级第一学期期末调研试题含解析_第2页
2023学年北京海淀十一学校数学九年级第一学期期末调研试题含解析_第3页
2023学年北京海淀十一学校数学九年级第一学期期末调研试题含解析_第4页
2023学年北京海淀十一学校数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1关于x的一元二次方程x2+4x+k0有两个相等的实数根,则k的值为()Ak4Bk4Ck4Dk42一个正比例函数的图象过点(2,3),它的表达式为( )ABCD3如图所示,在边长为1的小

2、正方形网格中,两个三角形是位似图形,则它们的位似中心是( ) A点OB点PC点MD点N4将抛物线先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )ABCD5如图,在菱形ABOC中,A=60,它的一个顶点C在反比例函数的图像上,若菱形的边长为4,则k值为( )ABCD6函数与的图象如图所示,有以下结论:b24c1;bc1;3bc61;当13时,1其中正确的个数为( )A1个B2个C3个D4个7二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为( )AB2CD8如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是

3、AM、MC的中点,则EF的长随着M点的运动()A不变B变长C变短D先变短再变长9附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是( )Av5tBvt5CvDv10点P(6,-8)关于原点的对称点的坐标为( )A(-6,8)B(6,-8)C(8,-6)D(8,-6)二、填空题(每小题3分,共24分)11在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_12已 知二次函数 y =ax2bx2(a 0) 图象的顶点在第二象限,且

4、过点(1,0),则a的取值范围是 _;若ab 的值为非零整数,则 b 的值为 _13如图,在四边形ABCD中,AB=BD,BDA=45,BC=2,若BDCD于点D,则对角线AC的最大值为_14如图,ABC是边长为2的等边三角形取BC边中点E,作EDAB,EFAC,得到四边形EDAF,它的面积记作;取中点,作,得到四边形,它的面积记作照此规律作下去,则=_ . 15如图所示,ABC是O的内接三角形,若BAC与BOC互补,则BOC的度数为_16已知关于x的一元二次方程x2+kx6=0有一个根为3,则方程的另一个根为_17从长度分别是,的四根木条中,抽出其中三根能组成三角形的概率是_18如图,取两根

5、等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形则原来的纸带宽为_三、解答题(共66分)19(10分)如图,在RtABC中,ACB=90,以斜边AB上一点O为圆心,OB为半径作O,交AC于点E,交AB于点D,且BEC=BDE(1)求证:AC是O的切线;(2)连接OC交BE于点F,若,求的值20(6分)如图所示,AB是O的直径,BD是O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DEAC于E(1)求证:AB=AC;(2)求证:DE为O的切线21(6分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,(1)画出关于原点成中心对称的,并写出点的坐标;(2)画出将绕点按顺时针旋转所得的22

6、(8分)已知关于x的一元二次方程x2+x+m11 (1)当m1时,求方程的实数根(2)若方程有两个不相等的实数根,求实数m的取值范围23(8分)在平面直角坐标系xoy中,点A (-4,-2),将点A向右平移6个单位长度,得到点B.(1)若抛物线y-x2bxc经过点A,B,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;(3)若抛物线y-x2bxc的顶点在直线yx2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范

7、围24(8分)正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且EDF45,将DAE绕点D逆时针旋转90,得到DCM(1)求证:EFCF+AE;(2)当AE2时,求EF的长25(10分)如图,在四边形中,已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点(1)求点的坐标和反比例函数的解析式;(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?26(10分)如图,在ABC中,ABAC,以AB为直径的O与边BC,AC分别交于D,E两点,过点D作DHAC于点H(1)求证:BDCD;(2)连结OD若四边形AODE为菱形,BC8,求DH的

8、长参考答案一、选择题(每小题3分,共30分)1、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论【详解】解:关于x的一元二次方程x2+1x+k0有两个相等的实数根,121k161k0,解得:k1故选:A【点睛】本题考查了根的判别式以及解一元一次方程,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键2、A【分析】根据待定系数法求解即可【详解】解:设函数的解析式是ykx,根据题意得:2k3,解得:k故函数的解析式是:yx故选:A【点睛】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键3、B

9、【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心即位似中心一定在对应点的连线上【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心故选:B【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键4、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可【详解】抛物线先向左平移1个单位得到解析式:,再向上平移2个单位得到抛物线的解析式为:故选:【点睛】此题考查了抛物

10、线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减5、C【分析】由题意根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值.【详解】解:在菱形ABOC中,A=60,菱形边长为4,OC=4,COB=60,C的横轴坐标为,C的纵轴坐标为,点C的坐标为(-2,),顶点C在反比例函数的图象上,=,得k=,故选:C.【点睛】本题考查反比例函数图像以及菱形的性质,解答本题的关键是明确题意,求出点C的坐标,利用反比例函数的性质解答6、C【分析】利用二次函数与一元二次方程的联系对进行判断;利用,可对进行判断;利用,对进行判断;根据时,可对进行判断 【详解】解:抛物线与轴没有公共点

11、,所以错误;,即,所以正确;,所以正确;时,的解集为,所以正确 故选:C【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程、二次函数与不等式,掌握二次函数的性质是解题的关键7、D【解析】由mxn和mn0知m0,n0,据此得最小值为1m为负数,最大值为1n为正数将最大值为1n分两种情况,顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出【详解】解:二次函数y=(x1)1+5的大致图象如下:当m0 xn1时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=n时y取最大值,即1n=(n1

12、)1+5, 解得:n=1或n=1(均不合题意,舍去);当m0 x1n时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=1时y取最大值,即1n=(11)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,m=,m0,此种情形不合题意,所以m+n=1+=8、A【分析】由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【详解】解:E,F分别是AM,MC的中点, , A、C是定点,AC的的长恒为定长,无论M运动到哪个位置EF的长不变,故选A【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且

13、等于第三边的一半.9、C【分析】根据速度路程时间即可写出时间t与速度(平均速度)v之间的函数关系式.【详解】速度路程时间,v.故选C.【点睛】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.10、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),可以直接选出答案【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8)故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反二、填空题(

14、每小题3分,共24分)11、【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,P(美丽)故答案为:【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比12、 【分析】根据题意可得a0,把(1,0)函数得ab+2=0,导出b

15、和a的关系,从而解出a的范围,再根据ab 的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a0,且b=a+2,a=b2,a+b=a+a+2=2a+2,a+20,2a0,22a+22,a+b的值为非零实数,a+b的值为1,1,2a+2=1或2a+2=1, 或 ,b=a+2, 或13、【分析】以BC为直角边,B为直角顶点作等腰直角三角形CBE (点E在BC下方),先证明,从而,求的最大值即可,以为直径作圆,当经过中点时,有最大值.【详解】以BC为直角边,B为直角顶点作等腰直角三角形CBE (点E在BC下方),即CB=BE,连接DE,在和中,() ,若求AC的最大值,则求出的最大值即可

16、,是定值,BDCD,即,点D在以为直径的圆上运动,如上图所示,当点D在上方,经过中点时,有最大值,在Rt中,对角线AC的最大值为:故答案为:【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的性质、圆的知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.14、【分析】先求出ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【详解】ABC是边长为2的等边三角形,ABC的高=SABC=,E是BC边的中点,EDAB,ED是ABC的中位线,ED=ABSCDE= SABC,同理可得SBEF=SABCS1=SABC=,同理可求S2=

17、SBEF=SABC=,以此类推,Sn=SABC=S2019=.【点睛】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.15、120【分析】利用圆周角定理得到BACBOC,再利用BAC+BOC180可计算出BOC的度数【详解】解:BAC和BOC所对的弧都是,BACBOCBAC+BOC180,BOC+BOC180,BOC120故答案为:120【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键16、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(3)=k,3a=6,求出即可【详解】设方程的另一个根为a,则根据根与系数的关系得:

18、a+(3)=k,3a=6,解得:a=1,故答案为1【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键17、【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是.【点睛】本题考查了列举法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本要求为两小边之和大于最大边18、【分析】根据正六边的性质,正六边形由6个边长为2的

19、等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可【详解】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度2故答案为:【点睛】此题考查的是正六边形的性质和正三角形的性质,掌握正六边形的性质和正三角形的性质是解决此题的关键三、解答题(共66分)19、(1)证明见解析;(2) 【解析】试题分析:(1)连接OE,证得OEAC即可确定AC是切线;(2)根据OEBC,分别得到AOEACB和OEFCBF,利用相似三角形对应边的比相等找到中间比即可求解试题解析:解:(1)连接OEOB=OE,OBE=OEBACB=90,C

20、BE+BEC=90BD为O的直径,BED=90,DBE+BDE=90,CBE=DBE,CBE=OEB,OEBC,OEA=ACB=90,即OEAC,AC为O的切线(2)OEBC,AOEABC,OE:BC=AE:ACCE:AE=2:3,AE:AC=3:1,OE:BC=3:1OEBC,OEFCBF,点睛:本题考查了切线的判定,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直20、(1)证明见解析;(2)证明见解析;【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为O的切线,只要证明ODE=90即可【详解】(1)连接AD;AB是O的直径,ADB=90又DC=BD

21、,AD是BC的中垂线AB=AC(2)连接OD;OA=OB,CD=BD,ODACODE=CED又DEAC,CED=90ODE=90,即ODDEDE是O的切线考点:切线的判定21、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求见解析.【解析】分别作出三顶点关于原点的对称点,再顺次连接即可得;分别作出点、绕点按顺时针旋转所得的对应点,再顺次连接即可得【详解】解:(1)如图所示,即为所求,其中点的坐标为(2)如图所示,即为所求【点睛】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键22、(1)x1,x2(2)m 【分析】(1)令m=1,用公式法求出一元二次方程的根即可

22、;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可【详解】(1)当m=1时,方程为x2+x1=1=1241(1)=51,x,x1,x2(2)方程有两个不相等的实数根,1,即1241(m1)=14m+4=54m1,m【点睛】本题考查了一元二次方程的解法、根的判别式一元二次方程根的判别式=b24ac23、(1)y-x2-2x6;(2)存在,D (,);(2)-4t-2或0t1【分析】(1)根据点A的坐标结合线段AB的长度,可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)由抛物线解析式,求出顶点C的坐标,从而求出直线BC解析式,设D

23、 (d,-2d+4),根据已知可知AD=AB=6时,ABCBAD,从而列出关于d的方程,解方程即可求解; (2)将抛物线的表达式变形为顶点时,依此代入点A,B的坐标求出t的值,再结合图形即可得出:当抛物线与线段AB有且只有一个公共点时t的取值范围【详解】(1)点A的坐标为(-4,-2),将点A向右平移6个单位长度得到点B,点B的坐标为(2,-2)抛物线y-x2+bxc过点,, 解得抛物线表达式为y-x2-2x6 (2)存在. 如图由(1)得,y-x2-2x6-(x+1)27,C (-1,7) 设直线BC解析式为ykxb解之得,lBC:y-2x4设D (d,-2d+4),在ABC中AC=BC当且

24、仅当AD=AB=6时,两三角形相似即(-4-d)2+(-2+2d-4)2=26时,ABCBAD,解之得,d1=、d2=2(舍去)存在点D,使ABC和以点A,B,D构成的三角形相似,此时点D (,);(2)如图:抛物线y-x2+bxc顶点在直线上 抛物线顶点坐标为 抛物线表达式可化为把代入表达式可得解得又抛物线与线段AB有且只有一个公共点,-4t-2 把代入表达式可得解得,又抛物线与线段AB有且只有一个公共点,0t1 综上可知的取值范围时-4t-2或0t1【点睛】本题考查了点的坐标变化、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及三角形相似,解题的关键是:(1)根据点的变化,找出点

25、B的坐标,根据点A,B的坐标,利用待定系数法求出抛物线的表达式;(2)假设ABCBAD,列出关于d的方程,(2)代入点A,B的坐标求出t值,利用数形结合找出t的取值范围24、(1)见解析;(2)1,详见解析【分析】(1)由旋转可得DEDM,EDM为直角,可得出EDF+MDF90,由EDF41,得到MDF为41,可得出EDFMDF,再由DFDF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EFCF+AE;(2)由(1)的全等得到AECM2,正方形的边长为6,用ABAE求出EB的长,再由BC+CM求出BM的长,设EFMFx,可得出BFBMFMBMEF8x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【详解】(1)证明:DAE逆时针旋转90得到DCM,FCMFCD+DCM180,AECM,F、C、M三点共线,DEDM,EDM90,EDF+FDM90,EDF41,FDMEDF41,在DEF和DMF中,DEFDMF(SAS),EFMF,EFCF+AE;(2)解:设EFMFx,AECM2,且BC6,BMBC+CM6+28,BFBMMFBMEF8x,EBABAE624,在RtEBF中,由勾股定理得,即,解得:x1,则EF1【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论