重庆市江津区2023学年数学九上期末检测模拟试题含解析_第1页
重庆市江津区2023学年数学九上期末检测模拟试题含解析_第2页
重庆市江津区2023学年数学九上期末检测模拟试题含解析_第3页
重庆市江津区2023学年数学九上期末检测模拟试题含解析_第4页
重庆市江津区2023学年数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,AB为O的直径,C、D是O上的两点,CDB25,过点C作O的切线交AB的延长线于点E,则E的度数为()A40B50C55D602样本中共有5个个体,其值分别为

2、a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A65B65C2D3在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A2000000cmB2000mC200kmD2000km4如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=( )ABCD5下列事件是必然事件的为( )A明天早上会下雨B任意一个三角形,它的内角和等于180C掷一枚硬币,正面朝上D打开电视机,正在播放“义乌新闻”6已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A21B20C19D187如图,用一个半径为5 cm

3、的定滑轮带动重物上升,滑轮上一点P旋转了108,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A cmB2 cmC3 cmD5 cm8三角形的两边分别2和6,第三边是方程x2-10 x+21=0的解,则三角形周长为( )A11B15C11或15D不能确定9某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)10如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PAx轴于点A,PBy轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积( )A保持不变B逐渐增大C逐渐减小D无法确定二、填空题(每小题3分,共2

4、4分)11如图,在ABC中,BAC33,将ABC绕点A按顺时针方向旋转50,对应得到ABC,则BAC的度数为_12在一个不透明的盒子里有2个红球和个白球,这些求除颜色外其余完全相同,摇匀后 随机摸出一个,摸出红球的概率是,则的值为_13把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是 14如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,轴,则点的坐标为_15计算:2cos30+tan454sin260_16如图,正方形ABCD中,M为BC上一点,MEAM,ME交CD于点F,交AD的延长线于点E,若AB4,BM2,则的面积为_17已知点P1(a,3)与P2(4,b)关于原点对

5、称,则ab_18已知m,n是一元二次方程的两根,则_.三、解答题(共66分)19(10分)国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个新型能源产品的成本为100元.问:(1)设该产品的销售单价为元,每天的利润为元.则_(用含的代数式表示)(2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?20(6分)组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条

6、件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?21(6分)关于的一元二次方程有实数根(1)求的取值范围;(2)如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值22(8分)如图,在ABC中,BAC=90,AB=AC,点E在AC上(且不与点A,C重合),在ABC的外部作CED,使CED=90,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF(1)请直接写出线段AF,AE的数量关系 ;(2)将CED绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图的基础上,将C

7、ED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图写出证明过程;若变化,请说明理由23(8分)如图,在平面直角坐标系中,C与y轴相切,且C点坐标为(1,0),直线过点A(1,0),与C相切于点D,求直线的解析式24(8分)在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a+bx+c(a0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x0时,若y=a+bx+c(a0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=1时,在抛物线上是否存在点P,使PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明

8、理由,25(10分)如图,是的直径,是的切线,切点为,交于点,点是的中点.(1)试判断直线与的位置关系,并说明理由;(2)若的半径为2,求图中阴影部分的周长.26(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终MAN45(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CNCD6,设BD与AM的延长线交于点P,交AN于Q,直接写

9、出AQ、AP的长参考答案一、选择题(每小题3分,共30分)1、A【分析】首先连接OC,由切线的性质可得OCCE,又由圆周角定理,可求得COB的度数,继而可求得答案【详解】解:连接OC,CE是O的切线,OCCE,即OCE90,COB2CDB50,E90COB40故选:A【点睛】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键2、C【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可【详解】由题意知(a+0+1+2+3)5=1,解得a=-1,样本方差为故选:C【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样

10、本的平均数、方差公式是解答本题的关键3、C【分析】比例尺图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离【详解】根据比例尺图上距离:实际距离,得A、B两地的实际距离为20100000020000000(cm),20000000cm200km故A、B两地的实际距离是200km故选:C【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.4、A【解析】试题解析:是平行四边形, 故选A.5、B【分析】直接利用随机事件以及必然事件的定义分析得出答案【详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180,是必然事件,符合题意;C、掷一

11、枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意故选:B【点睛】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键6、A【解析】试题分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:8+8+5=1这个三角形的周长为1故选A考点:等腰三角形的性质7、C【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l=3cm,则重物上升了3cm,故选C.考点:旋转的性质8、B【详解】解:方程x2-10 x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边

12、为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1故选:B9、A【分析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k10、A【分析】因

13、为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变【详解】解:依题意有矩形OAPB的面积=2|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变故选:A【点睛】本题考查了反比例函数 y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|二、填空题(每小题3分,共24分)11、17【详解】解:BAC=33,将ABC绕点A按顺时针方向旋转50,对应得到ABC,

14、BAC=33,BAB=50,BAC的度数=5033=17.故答案为17.12、1【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可【详解】解:摸到红球的概率为解得n=1故答案为:1【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率13、【解析】试题分析:根据抛物线的平移规律:左加右减,上加下减,可知:把抛物线向下平移2个单位得,再向右平移1个单位,得考点:抛物线的平移14、【分析】根据矩形的性质和点的坐标,即可得出的纵坐标为2,设,根据反比例函数图象上点的坐标特征得出,解得,从而得出

15、的坐标为【详解】点的坐标为,四边形是矩形,轴,轴,点的纵坐标为2,设,矩形的顶点,在反比例函数的图象上,故答案为【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得的纵坐标为2是解题的关键15、1【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可【详解】解:2cos30+tan454sin2602+143+14431故答案为:1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有

16、理数的运算律在实数范围内仍然适用16、1【分析】先根据正方形的性质可得,从而可得,再根据相似三角形的判定与性质可得,从而可得CF的长,又根据线段的和差可得DF的长,然后根据相似三角形的判定与性质可得,从而可得出DE的长,最后根据直角三角形的面积公式即可得【详解】四边形ABCD是正方形,即在和中,即解得又,即,即解得则的面积为故答案为:1【点睛】本题考查了正方形的性质、相似三角形的判定定理与性质等知识点,熟练掌握相似三角形的判定定理与性质是解题关键17、1【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b的值,再代入ab中可得到答案【详解】解:P(a,

17、3)与P(-4,b)关于原点的对称,a=4,b=-3,ab=4(-3)=-1,故答案为:-1【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点注意:关于原点对称的点,横纵坐标分别互为相反数18、-1【分析】根据根与系数的关系求出m+n与mn的值,然后代入计算即可.【详解】m,n是一元二次方程的两根,m+n=2,mn=-3,2-3=-1.故答案为:-1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .三、解答题(共66分)19、(1)或;(2)当销售单价为180元时,公司每天可获利32000元.【分析】

18、(1)根据总利润单件利润销量,用的代数式分别表示两个量,构建方程即可;(2)由(1)所得的函数,当时,解一元二次方程即可求得答案.【详解】(1)依题意得:(2)公司每天可获利32000元,即,则,化简得:,解得:,答:当销售单价为180元时,公司每天可获利32000元.【点睛】本题主要考查二次函数的应用、一元二次方程的解法,理解题意找到题目蕴含的相等关系列出方程是解题的关键20、比赛组织者应邀请8个队参赛.【解析】本题可设比赛组织者应邀请x队参赛,则每个队参加(x-1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果解:设比赛组织者应邀请个队参赛.依题意列

19、方程得: , 解之,得,. 不合题意舍去,. 答:比赛组织者应邀请8个队参赛.“点睛”本题是一元二次方程的求法,虽然不难求出x的值,但要注意舍去不合题意的解21、(1);(2)的值为【分析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根

20、;当时,方程无实数根22、 (1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析.【分析】(1)如图中,结论:AF=AE,只要证明AEF是等腰直角三角形即可(2)如图中,结论:AF=AE,连接EF,DF交BC于K,先证明EKFEDA再证明AEF是等腰直角三角形即可(3)如图中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明EDFECA,再证明AEF是等腰直角三角形即可【详解】解:(1)如图中,结论:AF=AE理由:四边形ABFD是平行四边形,AB=DF,AB=AC,AC=DF,DE=EC,AE=EF,DEC=AEF=90,AEF是等腰直角三角形

21、, AF=AE(2)如图中,结论:AF=AE理由:连接EF,DF交BC于K四边形ABFD是平行四边形,ABDF,DKE=ABC=45,EKF=180DKE=135,ADE=180EDC=18045=135,EKF=ADE,DKC=C,DK=DC,DF=AB=AC,KF=AD, 在EKF和EDA中, ,EKFEDA, EF=EA,KEF=AED,FEA=BED=90,AEF是等腰直角三角形,AF=AE(3)如图中,结论不变,AF=AE理由:连接EF,延长FD交AC于KEDF=180KDCEDC=135KDC,ACE=(90KDC)+DCE=135KDC,EDF=ACE,DF=AB,AB=AC,D

22、F=AC在EDF和ECA中,EDFECA,EF=EA,FED=AEC,FEA=DEC=90,AEF是等腰直角三角形,AF=AE【点睛】本题考查四边形综合题,综合性较强23、或.【详解】解:如图所示,连接CD, 直线为C的切线,CDAD C点坐标为(1,0),OC=1,即C的半径为1,CD=OC=1 又点A的坐标为(1,0),AC=2,CAD=30,在RtAOB中,即,设直线l解析式为:y=kx+b(k0),则解得直线l的函数解析式为,同理可得,当直线l在x轴的下方时,直线l的函数解析式为.故直线l的函数解析式为或.【点睛】这是一道圆与直角坐标系的综合题,求直线的解析式,通常用待定系数法(知道图

23、象上两个点的坐标即可),题目已给出点A的坐标,再求出一个点即可,抓住点D是直线与C的切点,由C点坐标为(1,0)及圆的性质易求点B的坐标为(0,),由点A和点B的坐标易求直线的解析式24、(1)b=3a+1;c=3;(2);(3)点P的坐标为:(,)或(,)或(,)或(,).【分析】(1)求出点A、B的坐标,即可求解;(2)当x0时,若y=ax2+bx+c(a0)的函数值随x的增大而增大,则函数对称轴,而b=3a+1,即:,即可求解;(3)过点P作直线lAB,作PQy轴交BA于点Q,作PHAB于点H,由SPAB=,则=1,即可求解【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x

24、=,故点A、B的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax2+bx+3,将点A坐标代入上式并整理得:b=3a+1;(2)当x0时,若y=ax2+bx+c(a0)的函数值随x的增大而增大,则函数对称轴,解得:,a的取值范围为:;(3)当a=时,b=3a+1=二次函数表达式为:,过点P作直线lAB,作PQy轴交BA于点Q,作PHAB于点H,OA=OB,BAO=PQH=45,SPAB=ABPH=PQ=,则PQ=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点,分别与点AB组成的三角形的面积也为,设点P(x,-x2-2x+3),则点Q(x,

25、x+3),即:-x2-2x+3-x-3=1,解得:或;点P的坐标为:(,)或(,)或(,)或(,).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系25、 (1)直线与相切;理由见解析;(2).【分析】(1)连接OE、OD,根据切线的性质得到OAC=90,根据三角形中位线定理得到OEBC,证明AOEDOE,根据全等三角形的性质、切线的判定定理证明;(2)根据切线长定理可得DE=AE=2.5,由圆周角定理可得AOD=100,然后根据弧长公式计算弧AD的长,从而可求得结论

26、【详解】解:(1)直线DE与O相切, 理由如下:连接OE、OD,如图,AC是O的切线,ABAC,OAC=90,点E是AC的中点,O点为AB的中点,OEBC,1=B,2=3,OB=OD,B=3,1=2,在AOE和DOE中OA=OD1=2OE=OE,AOEDOE(SAS)ODE=OAE=90,DEOD,OD为O的半径,DE为O的切线;(2)DE、AE是O的切线,DE=AE,点E是AC的中点,DE=AE=AC=2.5,AOD=2B=250=100,阴影部分的周长=【点睛】本题考查的是切线的判定与性质、全等三角形的判定和性质、三角形的中位线、切线长定理、弧长的计算,掌握切线的性质与判定、弧长公式是解题的关键26、(1)BM+DNMN;(2)(1)中的结论不成立,DNBMMN理由见解析;(3)APAM+PM3【分析】(1)在MB的延长线上,截取BE=DN,连接AE,则可证明ABEADN,得到AE=AN,进一步证明AEMANM,得出ME=MN,得出BM+DN=MN;(2)在D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论