版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1 菱形ABCD的一条对角线长为6,边AB的长是方程x27x+120的一个根,则菱形ABCD的周长为()A16B12C16或12D242二次函数的图象如图,则一次函数的图象经过( )A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限3若反比例函数y的图象经过点(3,1),则它的图象也一
2、定经过的点是()A(3,1)B(3,1)C(1,3)D(1,3)4反比例函数,下列说法不正确的是()A图象经过点(1,-3)B图象位于第二、四象限C图象关于直线y=x对称Dy随x的增大而增大5下列事件中,为必然事件的是( )A太阳从东方升起B发射一枚导弹,未击中目标C购买一张彩票,中奖D随机翻到书本某页,页码恰好是奇数6能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是 ( )A120,60B95,105C30,60D90,907如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD与矩形EABF相似,AB1,则矩形ABCD的面积是()A4B2CD
3、8下列方程中,关于x的一元二次方程是()Ax2x(x+3)0Bax2+bx+c0Cx22x30Dx22y109菱形中,对角线相交于点,以为圆心,以3为半径作,则四个点在上的个数为( )A1B2C3D410不论取何值时,抛物线与轴的交点有( )A0个B1个C2个D3个二、填空题(每小题3分,共24分)11如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_12记函数的图像为图形,函数的图像为图形,若N与没有公共点,则的取值范围是_.13如图,直线l1l2l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,
4、则_14如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=_15某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是_ ,此时每千克的收益是_ 16如图,某商店营业大厅自动扶梯AB的倾斜角为31,AB的长为12米,则大厅两层之间的高度为_米(结果保留两个有效数字)(参考数据;sin31=0.515,cos31=0.857,tan31=0.601)17从一副扑克牌中取出两张红桃和两张黑桃,
5、将这四张扑克牌洗匀后背面朝上,从中随机摸出两张牌,那么摸到两张都是红牌的概率是_18如图,在RtABC中,ACB=90,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为_三、解答题(共66分)19(10分)如图,在ABC中,A为钝角,AB=25,AC=39,求tanC和BC的长. 20(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概
6、率21(6分)小红想利用阳光下的影长测量学校旗杆AB的高度如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米(1)请在图中画出此时旗杆AB在阳光下的投影BF (2)如果BF=1.6,求旗杆AB的高22(8分)如图,在RtABC中,ACB90(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)(2)在(1)的条件下,以点P为圆心,PC长为半径的P中,P与边BC相交于点D,若AC6,PC3,求BD的长23(8分)如图所示,在平面直角坐标系中,一次函数ykx+b(k0)与反比
7、例函数y(m0)的图象交于第二、四象限A、B两点,过点A作ADx轴于D,AD4,sinAOD,且点B的坐标为(n,2)(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b的x的取值范围;(3)E是y轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点坐标24(8分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y2x+800(200 x400)(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的
8、单价应定为多少元?25(10分)如图1,在平面直角坐标系xOy中,已知ABC,ABC=90,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,ADC与ABC关于AC所在的直线对称(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k0)的图象与BA的延长线交于点P问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由26(1
9、0分)如图,已知一个,其中,点分别是边上的点,连结,且(1)求证:;(2)若求的面积参考答案一、选择题(每小题3分,共30分)1、A【分析】先利用因式分解法解方程得到x13,x24,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长【详解】(x3)(x4)0,x30或x40,所以x13,x24,菱形ABCD的一条对角线长为6,边AB的长是4,菱形ABCD的周长为1故选A【点睛】本题考查菱形的性质和解一元二次方程-因式分解法,解题的关键是掌握菱形的性质和解一元二次方程-因式分解法.2、C【解析】抛物线的顶点在第四象限,1,11,一次函数的图象经过二、三、四象限故选C3、D【分析】由反比例函
10、数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解【详解】反比例函数y的图象经过点(3,1),y,把点一一代入,发现只有(1,3)符合故选D【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上4、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,在每个象限内,随的增大而增
11、大,不在同一象限,不具有此性质,故D是不正确的,故选:D【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.5、A【分析】根据必然事件以及随机事件的定义对各选项进行逐一分析即可【详解】A、太阳从东方升起是必然事件,故本选项正确;B、发射一枚导弹,未击中目标是随机事件,故本选项错误;C、购买一张彩票,中奖是随机事件,故本选项错误;D、随机翻到书本某页,页码恰好是奇数是随机事件,故本选项错误故选:A【点睛】本题考查了必然事件,解决本题需要
12、正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件6、D【分析】根据两个直角互补的定义即可判断【详解】解:互补的两个角可以都是直角,能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90,90,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180,则这两个角互补7、D【分析】根据相似多边形的性质列出比例式,计算即可【详解】矩形ABCD与矩形EABF相似,即,解得,AD,矩形ABCD的面积ABAD,故选:D【点睛】此题主要考查相似
13、多边形,解题的关键是根据相似的定义列出比例式进行求解.8、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数由这四个条件对四个选项进行验证,满足这四个条件者为正确答案【详解】解:A、x2x(x+3)0,化简后为3x0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c0,当a0时,不是关于x的一元二次方程,故此选项不合题意;C、x22x30是关于x的一元二次方程,故此选项符合题意;D、x22y10含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C【点睛】此题主要考查了一元二次方程的定
14、义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”9、B【分析】根据菱形的性质可知,AO=CO=3,OB=OD,ACBD,再根据勾股定理求出BO的长,从而可以判断出结果【详解】解:如图,由菱形的性质可得,AO=CO=3,BO=DO,ACBD,在RtABO中,BO=DO3,点A,C在上,点B,D不在上故选:B【点睛】本题考查菱形的性质、点与圆的位置关系以及勾股定理,掌握基本性质和概念是解题的关键10、C【分析】首先根据题意与轴的交点即,然后利用根的判别式判定即可.【详解】由题意,得与轴的交点,即不论取
15、何值时,抛物线与轴的交点有两个故选C.【点睛】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、【分析】根据反比函数比例系数k的几何意义得到SAOC=SBOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】解:PCx轴,PDy轴,SAOC=SBOD=,S矩形PCOD=3,四边形PAOB的面积=3=1故答案为:1【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|12、或【分析】分两种情
16、况讨论:M在N的上方,因为抛物线开口向上,故只要函数与函数组成的方程组无解即可.M在N的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.【详解】M在N的上方,因为抛物线开口向上,故只要函数与函数组成的方程组无解即可.可得:整理得: M在N的下方,因为抛物线开口向上,对称轴为直线x=3,故只需考虑当x=-2和6时在直线的下方即可.当x=-2时,4+12-5a+36,解得: 当x=6时,36-36-5a+3-2,解得:a1故综上所述:或【点睛】本题考查的是二次函数与一次函数是交点问题,本题的关键在于二次函数的取值范围,需考虑二次函数的开口方向.13、1【分
17、析】根据题意求得,根据平行线分线段成比例定理解答【详解】,=1,l1l1l3,=1,故答案为:1【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键14、5cm【分析】先求出BF、CF的长,利用勾股定理列出关于EF的方程,即可解决问题【详解】四边形ABCD为矩形,BC90;由题意得:AFAD=BC10,EDEF,设EFx,则EC8x;由勾股定理得:BF2AF2AB236,BF6,CF1064;由勾股定理得:x242(8x)2,解得:x5,故答案为:5cm【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答15、9
18、时 元 【分析】观察图象找出点的坐标,利用待定系数法即可求出 关于x的函数关系式,=者做差后,利用二次函数的性质,即可解决最大收益问题.【详解】解:设交易时间为x,售价为,成本为,则设图1、图2的解析式分别为:,依题意得 解得出售每千克这种水果收益: 当 时,y取得最大值,此时: 在这段时间内,出售每千克这种水果收益最大的时刻是9时,此时每千克的收益是元故答案为: 9时;元【点睛】本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是:观察函数图象根据点的坐标,利用待定系数法求出关于x的函数关系式.16、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解
19、:在RtABC中,ACB=90,BC=ABsinBAC=120.5156.2(米),答:大厅两层之间的距离BC的长约为6.2米故答案为6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、【分析】根据题意列出所有等可能的结果数,然后根据概率公式求解.【详解】所有情况数:红桃1,红桃2红桃1,黑桃1红桃1,黑桃2红桃2,黑桃1红桃2,黑桃2黑桃1,黑桃2共有6种等可能的情况,其中符合的有1种,所以概率为【点睛】本题主要考查概率的求法.18、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三
20、角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,E是AB的中点,M是BD的中点,AD=2,EM为BAD的中位线, ,在RtACB中,AC=4,BC=3,由勾股定理得,AB= CE为RtACB斜边的中线,,在CEM中, ,即,CM的最大值为 .故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.三、解答题(共66分)19、tanC=;BC=1【分析】过点A作AD
21、BC于D,根据已知条件可得出AD,再利用勾股定理得出CD,进而得出tanC;在RtABD中,利用勾股定理求出BD=8,结合CD的长度,即可得出BC的长【详解】解:过点A作ADBC于D,在RtABD中,AB=25,sinB=,AD=ABsinB =15,在RtACD中,由勾股定理得CD2=AC2-AD2,CD2=392-152,CD=36,tanC=.在RtABD中,AB=25,AD=15,由勾股定理得BD=20,BC=BD+CD=1【点睛】本题考查了解直角三角形以及勾股定理,要熟练掌握好边角之间的关系20、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出
22、白球的概率=白球的个数红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键21、 (1)见解析 (2) 8m【详解】试题分析:(1)利用太阳
23、光线为平行光线作图:连结CE,过A点作AFCE交BD于F,则BF为所求;(2)证明ABFCDE,然后利用相似比计算AB的长试题解析:(1)连结CE,过A点作AFCE交BD于F,则BF为所求,如图;(2)AFCE,AFB=CED,而ABF=CDE=90,ABFCDE, 即, AB=8(m),答:旗杆AB的高为8m22、(1)如图所示,见解析;(1)BD的长为1【分析】(1)根据题意可知要作A的平分线,按尺规作图的要求作角平分线即可;(1)由切线长定理得出ACAE,设BDx,BEy,则BC6+x,BP3+x,通过PEBACB可得出,从而建立一个关于x,y的方程,解方程即可得到BD的长度.【详解】(
24、1)如图所示:作A的平分线交BC于点P,点P即为所求作的点(1)作PEAB于点E,则PEPC3,AB与圆相切,ACB90,AC与圆相切,ACAE,设BDx,BEy,则BC6+x,BP3+x,BB,PEBACB,PEBACB 解得x1,答:BD的长为1【点睛】本题主要考查尺规作图及相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.23、(1)y,yx+1;(2)x3或0 x6;(3)点P的坐标为P(0,5)或(0,5)或(0,8)或(0,)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解
25、即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论【详解】ADx轴,ADO90,在RtAOD中,AD4,sinAOD,OA5,根据勾股定理得,OD3,点A在第二象限,A(3,4),点A在反比例函数y的图象上,m3412,反比例函数解析式为y,点B(n,2)在反比例函数y上,2n12,n6,B(6,2),点A(3,4),B(6,2)在直线ykx+b上,一次函数的解析式为yx+1;(2)由图象知,满足kx+b的x的取值范围为x3或0 x6;(3)设点E的坐标为(0,a),A(3,4),O(0,
26、0),OE|a|,OA5,AE,AOE是等腰三角形,当OAOE时,|a|5,a5,P(0,5)或(0,5),当OAAE时,5,a8或a0(舍),P(0,8),当OEAE时,|a|,a,P(0,),即:满足条件的点P的坐标为P(0,5)或(0,5)或(0,8)或(0,)【点睛】此题是反比例函数综合题,主要考查了待定系数法,锐角三角函数,等腰三角形的性质,用方程的思想解决问题是解本题的关键24、(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元【分析】(1)根据“总利润=每件的利润销量”列出一元二次方程即
27、可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可【详解】(1)根据题意得,(2x+800)(x200)15000,解得:x1250,x2350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,wy(x200)(2x+800)(x200)2x2+1200 x1600002(x300)2+20000,20,当x300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键25、(1)点D坐标为(5,);(2)OB=2;(2)k=12【解析】分析:(1)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学音乐课堂形成性评价与音乐素养发展研究教学研究课题报告
- 教育信息化背景下人工智能区域教育质量监测指标优化路径研究教学研究课题报告
- 初中生校园鸟类观察活动与生态保护意识培养研究教学研究课题报告
- 人工智能辅助下的自然语言处理:初中生个性化学习反思引导模式研究教学研究课题报告
- 2025年社区团购产地直采冷链技术行业报告
- 2024年西南大学马克思主义基本原理概论期末考试笔试真题汇编
- 2024年浙江电力职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年安徽矿业职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2025年吉林医药学院马克思主义基本原理概论期末考试笔试题库
- 2025年浙江万里学院马克思主义基本原理概论期末考试参考题库
- 全球及中国机场照明市场发展格局与投资前景动态研究报告2025-2030年
- 2024医用耗材遴选制度
- 《西游记》之期末试卷真题50道(含答案)
- DB45 1271-2015 地理标志产品 浦北红椎菌
- 《化妆舞会》参考课件
- 2025高中物理学业水平考试知识点归纳总结(必修部分)
- 桁架搭建施工方案
- 《楚门的世界》电影赏析
- 动物实验方法与技术智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 高空刷漆施工合同范本
- (正式版)JBT 14449-2024 起重机械焊接工艺评定
评论
0/150
提交评论