版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1方程的解是( )Ax=0Bx=1Cx=0或x=1Dx=0或x=-12将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为( )ABCD3如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在
2、反比例函数的图象上,则的值为()ABC2D4已知一个几何体如图所示,则该几何体的主视图是()ABCD5下列四个图形中,不是中心对称图形的是()ABCD6表给出了二次函数yax2+bx+c(a0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c0的一个根的近似值可能是()x11.11.21.31.4y10.490.040.591.16A1.08B1.18C1.28D1.387如图,ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置如果ABC的面积为10,且sinA,那么点C的位置可以在( )A点C1处B点C2处C点C3处D点C4处8在一个不透明的布袋中装有40个黄、白两种颜
3、色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A12个B14个C18个D28个9如图,在ABC中,CD平分ACB交AB于点D,过点D作DEBC交AC于点E,若A=54,B=48,则CDE的大小为()A44B40C39D3810如图,平行于BC的直线DE把ABC分成面积相等的两部分,则的值为()A1BC-1D+111下列说法正确的是( )A一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C明天降雨的概率是80%,表示明天有80%的时间降
4、雨D某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖12如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D55二、填空题(每题4分,共24分)13在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_个14若抛物线与轴没有交点,则的取值范围是_15数据2,3,5,5,4的众数是_16某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小
5、明的身高为1.5米,则树高为_米17如图是小孔成像原理的示意图,点与物体的距离为,与像的距离是,. 若物体的高度为,则像的高度是_. 18若二次函数的图像经过点,则的值是_三、解答题(共78分)19(8分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度)(1)请画出将ABC向下平移5个单位后得到的A1B1C1;(2)将ABC绕点O逆时针旋转90,画出旋转后得到的A2B2C2,并直接写出点B旋转到点B2所经过的路径长20(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从
6、布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y)(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=x+5图象上的概率21(8分)五一期间,小红和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣小红进行了以下的测量:她到与西塔距离27米的一栋大楼处,在楼底A处测得塔顶B的仰角为60,再到楼顶C处测得塔顶B的仰角为30那么你能帮小红计算西塔BD和大楼AC的高度吗?22(10分)如图,已知抛物线yax2+bx+c过点A(3,0),B(2,3),C(
7、0,3),顶点为D(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值23(10分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率24(10分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1(1)求反比例函数的解析式;(2)当时,求反比例函
8、数的取值范围25(12分)计算:(1);(2)解方程26已知关于的一元二次方程的两实数根,满足,求的取值范围.参考答案一、选择题(每题4分,共48分)1、C【分析】根据因式分解法,可得答案【详解】解:,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C【点睛】本题考查了解一元二次方程,因式分解法是解题关键2、B【分析】根据抛物线的平移规律:上加下减,左加右减解答即可【详解】解:将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为:故选:B【点睛】本题考查了抛物线的平移,属于基础题型,熟练掌握抛物线的平移规律是解题的
9、关键3、A【解析】利用菱形的性质, 根据正切定义即可得到答案.【详解】解:设,点为菱形对角线的交点,把代入得,四边形为菱形,解得,在中,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,解题关键在于运用菱形的性质4、A【分析】主视图是从物体正面看,所得到的图形【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.5、B【分析】根据中心对称图形的概念,即可求解【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意故选:B【点睛】本
10、题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.6、B【分析】观察表中数据得到抛物线yax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),然后根据抛物线与x轴的交点问题可得到方程ax2+bx+c0一个根的近似值【详解】x1.1时,yax2+bx+c0.49;x1.2时,yax2+bx+c0.04;抛物线yax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),方程ax2+bx+c0有一个根约为1.1故选
11、:B【点睛】本题主要考查抛物线与x轴的交点问题,掌握二次函数的图象与x轴的交点的横坐标与一元二次方程的根的关系,是解题的关键.7、D【解析】如图:AB=5, D=4, , ,AC=4,在RTAD中,D,AD=8, A=,故答案为D.8、A【分析】根据概率公式计算即可【详解】解:设袋子中黄球有x个,根据题意,得:0.30,解得:x12,即布袋中黄球可能有12个,故选:A【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率9、C【解析】根据三角形内
12、角和得出ACB,利用角平分线得出DCB,再利用平行线的性质解答即可【详解】A=54,B=48,ACB=1805448=78,CD平分ACB交AB于点D,DCB=78=39,DEBC,CDE=DCB=39,故选C【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质10、C【解析】由DEBC可得出ADEABC,利用相似三角形的性质结合SADE=S四边形BCED,可得出,结合BD=ABAD即可求出的值【详解】DEBC,ADE=B,AED=C,ADEABC,SADE=S四边形BCED,SABC=SADE+S
13、四边形BCED,故选C【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键11、B【分析】根据概率的求解方法逐一进行求解即可得.【详解】A.无论一颗质地均匀的骰子多少次,每次抛掷出5点的概率都是,故 A错误;B.抛掷一枚图钉,因为图钉质地不均匀,钉尖触地和钉尖朝上的概率不相等,故 B正确;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故 C错误D.某种彩票中奖的概率是1%,表 明 中奖的 概 率为1%,故 D错误故答案为:B.【点睛】本题考查了对概率定义的理解,熟练掌握是解题的关键.12、B【分析】根据图形旋转的性质得AC=AC,ACA=90
14、,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得到A BC,AC=AC,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键二、填空题(每题4分,共24分)13、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1【点睛】此题主要考查了概率公式,解题的关键是掌握随
15、机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数14、;【分析】利用根的判别式0列不等式求解即可【详解】解:抛物线与轴没有交点,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键15、1【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数【详解】解:1是这组数据中出现次数最多的数据,这组数据的众数为1故答案为:1【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意16、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等
16、进而得出答案【详解】解:根据相同时刻的物高与影长成比例设树的高度为,则,解得:故答案为:1【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义17、7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OEAB与点E,OFCD于点F根据题意可得:ABODCO,OE=30cm,OF=14cm即解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.18、1【分析】首先根据二次函数的图象经过点得到,再整体代值计算即可【详解】解:二次函数的图象经过点,=1,故答案为1【点睛】本题主
17、要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单三、解答题(共78分)19、(1)图见解析;(2)图见解析;路径长【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到A2B2C2,然后计算出OB的长后利用弧长公式计算点B旋转到点B2所经过的路径长【详解】解:(1)如图,A1B1C1为所作;(2)如图,A2B2C2为所作,OB2点B旋转到点B2所经过的路径长【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段
18、也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形20、(1)画树状图或列表见解析;(2).【解析】试题分析:根据题意列出表格,找出所有的点Q坐标,根据函数上的点的特征得出符合条件的点,根据概率的计算方法进行计算.试题解析:(1)列表得:(x,y)12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3, 1),(3,2),(3,4),(4,1),(4,2),(4,3)
19、共12种;(2)共有12种等可能的结果,其中在函数y=x+6图象上的有2种,即:(2,4),(4,2), 点P(x,y)在函数y=x+6图象上的概率为:P=考点:概率的计算.21、西塔BD的高度为27米,大楼AC的高度为米.【分析】作CEBD于E,根据正切的定义求出BD,根据正切的定义求出BE,计算求出DE,得到AC 的长【详解】解:作CEBD于E,则四边形ACED为矩形,CE=AD=27,AC=DE,在RtBAD中,tanBAD=,则BD=ADtanBAD=27,在RtBCE中,tanBCE=,则BE=CEtanBCE=,AC=DE=BD-BE=,答:西塔BD的高度为27米,大楼AC的高度为
20、米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键22、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标为,作B点关于直线的对称点,可求出直线的函数关系式为,当在直线上时,的值最小;(3)作轴交AC于E点,求得AC的解析式为,设,得,所以,求函数的最大值即可.【详解】将A,B,C点的坐标代入解析式,得方程组: 解得 抛物线的解析式为配方,得,顶点D的坐标为作B点关于直线的对称点,如图1,则,由得,可求出直线的函数关系式为,当在直线上时,的值最小,则作轴交AC于E点,如图2,AC的解析式为,设,当时,的面积的最大值是;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.23、(1)见解析;(2)【分析】(1)用列表法或画出树状图分析数据、列出可能的情况即可(2)A、B、D既是轴对称图形,也是中心对称图形,C是轴对称图形,不是中心对称图形列举出所有情况,让两次摸牌的牌面图形既是中心对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山大学附属第三医院2026年合同人员招聘备考题库参考答案详解
- 2025年浙江大学先进技术研究院多模态智能系统研究中心招聘备考题库及参考答案详解1套
- 2025年兴业银行济南分行社会招聘备考题库附答案详解
- 2025年盐城经济技术开发区部分单位公开招聘合同制工作人员7人备考题库完整参考答案详解
- 2026年职业健康安全管理合同
- 2025年中国水利水电科学研究院水力学所科研助理招聘备考题库及1套完整答案详解
- 2026年国际传统医药国际城市智慧交通合同
- 2026年急救知识培训服务合同
- 2025年日喀则市江孜县人社局关于公开招聘两名劳动保障监察执法辅助人员的备考题库及答案详解1套
- 建设一流化工园区经验交流材料经验交流
- 信息安全的工作岗位
- 《寒窑赋》全文(注音)释义及解析
- 工程腻子施工方案(3篇)
- 原发性小肠肿瘤多学科综合治疗中国专家共识解读课件
- 2026版高中汉水丑生生物-第六章第1节:细胞增殖 (第1课时)
- 人工肱骨头置换术术后护理
- 装修利润提升方案
- 九上道法第一单元《富强与创新》复习课件
- 货币发展史课件
- 儿童体适能初级基础课程8
- 燃用生物质循环流化床锅炉生产项目节能评估报告(节能专)
评论
0/150
提交评论