版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1记为等差数列的前项和.若,则( )A5B3C12D132已知,若则实数的取值范围是( )ABCD3已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD4若集合M1,3,N1
2、,3,5,则满足MXN的集合X的个数为()A1B2C3D45若的二项式展开式中二项式系数的和为32,则正整数的值为( )A7B6C5D46执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD7若函数函数只有1个零点,则的取值范围是( )ABCD8阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD9对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,.下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数1234567种子数43352210A2B3C3.5D410三棱锥中,侧棱底面,则该三棱锥的外
3、接球的表面积为( )ABCD11聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D12012已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知多项式的各项系数之和为32,则展开式中含项的系数为_14若实数满足不等式组,则的最小值是_15学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛
4、作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是_16已知二项式ax-1x6的展开式中的常数项为-160三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.18(12分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下
5、列问题:(1)求、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组20第5组100.1合计1.0019(12分)在平面直角坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围2
6、0(12分)如图,在四棱锥中,平面ABCD平面PAD,E是PD的中点证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值21(12分)已知函数,函数.()判断函数的单调性;()若时,对任意,不等式恒成立,求实数的最小值.22(10分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由题得,解得,计算可得.
7、【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.2C【解析】根据,得到有解,则,得,得到,再根据,有,即,可化为,根据,则的解集包含求解,【详解】因为,所以有解,即有解,所以,得,所以,又因为,所以,即,可化为,因为,所以的解集包含,所以或,解得,故选:C【点睛】本题主要考查一元二次不等式的解法及集合的关系的应用,还考查了运算求解的能力,属于中档题,3C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又
8、因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.4D【解析】可以是共4个,选D.5C【解析】由二项式系数性质,的展开式中所有二项式系数和为计算【详解】的二项展开式中二项式系数和为,故选:C【点睛】本题考查二项式系数的性质,掌握二项式系数性质是解题关键6B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻
9、辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.7C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.8C【解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件
10、;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.9C【解析】根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.10B【解析】由题,侧棱底面,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球
11、的半径 公式是解答的关键11C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.12C【解析】先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】令可得各项系数和为,得出,根据第一个因式展开式的常数项与第二个因式的展开式含一次项
12、的积与第一个因式展开式含x的一次项与第二个因式常数项的积的和即为展开式中含项,可得解.【详解】令,则得,解得,所以展开式中含项为:,故答案为:【点睛】本题主要考查了二项展开式的系数和,二项展开式特定项,赋值法,属于中档题.14-1【解析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-115C【解析】假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验
13、条件.162【解析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值【详解】二项式(ax-1x)令6-2r=0,求得r=3,可得常数项为-C63故答案为:2【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)答案不唯一,具体见解析(2)证明见解析【解析】(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意
14、,当时,当时,恒成立,此时在定义域上单调递增;当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不妨设,则,要证,只需证,易知,故只需证,即证令,(),则=,(也可代入后再求导)在上单调递减,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.18(1),;(2)【解析】(1)根据第1组的频数和频率求出,根据频数、频率、的关系分别求出,进而求出不低于70分的概
15、率;(2)由(1)得,根据分层抽样原则,分别从抽出2人,2人,1人,并按照所在组对抽出的5人编号,列出所有2名负责人的抽取方法,得出第4组抽取的学生中至少有一名是负责人的抽法数,由古典概型概率公式,即可求解.【详解】(1),由频率分布表可得成绩不低于70分的概率约为:(2)因为第3、4、5组共有50名学生,所以利用分层抽样在50名学生中抽取5名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取2人,2人,1人设第3组的3位同学为、,第4组的2位同学为、,第5组的1位同学为,则从五位同学中抽两位同学有10种可能抽法如下:,其中第4组的2位同学、至少有一位同学是负责人
16、有7种抽法,故所求的概率为.【点睛】本题考查补全频率分布表、古典概型的概率,属于基础题.19(1)C1:y21,C2 :x2+(y2)21;(2)0,1【解析】()消去参数可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;()设M(3cos,sin),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案【详解】(1)消去参数可得C1 的普通方程为y21,曲线C2 是圆心为(2,),半径为1 的圆,曲线C2 的圆心的直角坐标为(0,2),C2 的直角坐标方程为x2+(y2)21; (2)设M(3cos,sin),则|MC2| ,1sin1,1
17、|MC2|,由题意结合图象可得|MN|的最小值为110,最大值为1,|MN|的取值范围为0,1【点睛】本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题20(1)见解析;(2)【解析】(1)由平面平面的性质定理得平面,.在中,由勾股定理得,平面,即可得;(2)以为坐标原点建立空间直角坐标系,由空间向量法和异面直线与所成角的余弦值为,得点M的坐标,从而求出二面角的余弦值.【详解】(1)平面平面,平面平面= ,所以 .由面面垂直的性质定理得平面,在中,由正弦定理可得:,即,平面,.(2)以为坐标原点建立如图所示的空间直角坐标系,则,设 ,则, , 得,而,设平面的法向量为,由可得:,令,则
18、,取平面的法向量,则,故二面角的余弦值为.【点睛】本题考查了线线垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养和向量法的合理运用,属于中档题.21 (1) 故函数在上单调递增,在上单调递减;(2). 【解析】试题分析:()根据题意得到的解析式和定义域,求导后根据导函数的符号判断单调性()分析题意可得对任意,恒成立,构造函数,则有对任意,恒成立,然后通过求函数的最值可得所求试题解析:(I)由题意得, .当时,函数在上单调递增;当时,令,解得;令,解得.故函数在上单调递增,在上单调递减.综上,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减.(II)由题意知.,当时,函数单调递增不妨设 ,又函数单调递减,所以原问题等价于:当时,对任意,不等式 恒成立,即对任意,恒成立.记,由题意得在上单调递减.所以对任意,恒成立.令,则在上恒成立.故,而在上单调递增,所以函数在上的最大值为.由,解得.故实数的最小值为22(1)(2)【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广西国土规划集团招聘2人备考题库含答案详解(典型题)
- 2026中国人民财产保险股份有限公司平凉市分公司招聘备考题库含答案详解(典型题)
- 2026山东枣庄市第一批次市直就业见习招聘113人备考题库及答案详解参考
- 2026吉林省科维交通工程有限公司东南地区项目部劳务派遣人员招聘14人备考题库含答案详解ab卷
- 2026上半年贵州事业单位联考遵义医科大学附属医院招聘50人备考题库含答案详解
- 2026上海复旦大学计算与智能创新学院招聘专任副研究员1名备考题库附参考答案详解(培优)
- 2026上半年贵州事业单位联考印江自治县招聘83人备考题库及答案详解(历年真题)
- 2026上半年安徽事业单位联考铜陵市郊区招聘17人备考题库带答案详解(基础题)
- 2026上海复旦大学计算与智能创新学院招聘专任高级工程师1人备考题库含答案详解(突破训练)
- 2026山东济南文旅发展集团有限公司招聘2人备考题库附答案详解(能力提升)
- 义务教育均衡发展迎检路线及解说词2
- 大型船舶拆除方案范本
- 小作坊卫生规范制度
- 小学语文课堂美育融合教学策略
- 案件不网上公开申请书
- 贸易安全培训讲义课件
- GB/T 13609-2025天然气气体取样
- 教育资源分享平台管理框架模板
- 园林环卫安全培训内容课件
- 神经刺激治疗患者知情同意书模板
- 软件系统上线测试与验收报告
评论
0/150
提交评论