




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年陕西省榆林市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
2.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
3.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.0B.-8C.2D.10
4.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
5.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个
6.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]
7.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
8.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
9.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40
10.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
二、填空题(10题)11.
12.
13.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
14.
15.
16.己知等比数列2,4,8,16,…,则2048是它的第()项。
17.
18.
19.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
20.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。
三、计算题(5题)21.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
22.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
23.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
四、证明题(5题)26.△ABC的三边分别为a,b,c,为且,求证∠C=
27.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
28.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
29.己知sin(θ+α)=sin(θ+β),求证:
30.若x∈(0,1),求证:log3X3<log3X<X3.
五、简答题(5题)31.计算
32.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
33.已知a是第二象限内的角,简化
34.证明:函数是奇函数
35.已知是等差数列的前n项和,若,.求公差d.
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.
参考答案
1.A
2.C
3.B直线之间位置关系的性质.由k=4-m/m+2=-2,得m=-8.
4.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.
5.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.
6.C自变量x能取到2,但是不能取-2,因此答案为C。
7.A
8.B由题可知,f(x)=f(-x),所以函数是偶函数。
9.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.
10.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
11.
12.π/2
13.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
14.2
15.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
16.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
17.60m
18.16
19.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
20.2/π。
21.
22.
23.
24.
25.
26.
27.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
28.
∴PD//平面ACE.
29.
30.
31.
32.(1)(2)
33.
34.证明:∵∴则,此函数为奇函数
35.根据等差数列前n项和公式得解得:d=4
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025短期公寓租赁合作协议范本
- 语言幼儿防疫知识培训内容课件
- 红酒培训基础知识大全课件
- 2025合作协议范本:讲座教授聘任合同示例
- 红茶鉴赏知识讲解课件
- 诗词竞赛知识培训课件
- 项目风险管理单记录与跟踪模板
- 文档资料归档与索引制作指南
- 大数据时代人工智能技术应用课程教案
- 企业形象塑造与品牌推广模板
- GB/T 2679.7-2005纸板戳穿强度的测定
- GB/T 18884.2-2015家用厨房设备第2部分:通用技术要求
- 文化政策与法规(第一课)
- 色彩基础知识ppt
- 寻找消失的滇缅路:松山战痕课件
- 中小学教师职业道德规范解读
- 政府预算理论与实务(第四版)全套教学课件
- 四年级上册美术课件第1课 送给老师的花|沪教版
- 轧机设备安装施工方案
- 最新开工报告范文
- 制药企业仓库温湿度分布的验证
评论
0/150
提交评论