2021年湖北省黄石市某学校数学高职单招测试试题(含答案)_第1页
2021年湖北省黄石市某学校数学高职单招测试试题(含答案)_第2页
2021年湖北省黄石市某学校数学高职单招测试试题(含答案)_第3页
2021年湖北省黄石市某学校数学高职单招测试试题(含答案)_第4页
2021年湖北省黄石市某学校数学高职单招测试试题(含答案)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年湖北省黄石市某学校数学高职单招测试试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.2B.3C.4

2.己知向量a=(3,-2),b=(-1,1),则3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

3.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥

4.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

5.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1/x,则f(-1)=()A.2B.1C.0D.-2

6.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°

7.己知,则这样的集合P有()个数A.3B.2C.4D.5

8.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

9.已知,则sin2α-cos2α的值为()A.-1/8B.-3/8C.1/8D.3/8

10.A.B.C.

二、填空题(10题)11.1+3+5+…+(2n-b)=_____.

12.双曲线x2/4-y2/3=1的离心率为___.

13.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

14.

15.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.

16.函数的最小正周期T=_____.

17.设lgx=a,则lg(1000x)=

18.若lgx>3,则x的取值范围为____.

19.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.

20.函数y=x2+5的递减区间是

三、计算题(5题)21.解不等式4<|1-3x|<7

22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

23.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

24.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

四、证明题(5题)26.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

27.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

28.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

30.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

五、简答题(5题)31.求证

32.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

33.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

34.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

35.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

六、综合题(5题)36.

37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

39.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

40.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

参考答案

1.B

2.D

3.B几何体的三视图.由三视图可知该几何体为空心圆柱

4.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。

5.D函数的奇偶性.由题意得f(-1)=-f(1)=-(1+1)=-2

6.C

7.C

8.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

9.B三角函数的恒等变换,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8

10.A

11.n2,

12.e=双曲线的定义.因为

13.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

14.{x|1<=x<=2}

15.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。

16.

,由题可知,所以周期T=

17.3+alg(1000x)=lg(1000)+lgx=3+a。

18.x>1000对数有意义的条件

19.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。

20.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。

21.

22.

23.

24.

25.

26.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

27.

28.

∴PD//平面ACE.

29.

30.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

31.

32.

33.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

34.

35.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

36.

37.

38.

39.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

40.解:(1)直线l过A(0,2),B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论