下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.112.要使的积中不含有的一次项,则等于()A.-4 B.-3 C.3 D.43.下列计算正确的是()A. B.C. D.4.禽流感病毒的形状一般为球形,直径大约为0.000000102米,用科学记数法表示为()米A. B. C. D.5.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.76.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°7.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④8.若分式有意义,则的取值范围是()A. B. C. D.且9.下列命题是真命题的是()A.直角三角形中两个锐角互补 B.相等的角是对顶角C.同旁内角互补,两直线平行 D.若,则10.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.11.在平面直角坐标系中,线段的端点分别为,将线段平移到,且点的坐标为(8,4),则线段的中点的坐标为()A.(7,6) B.(6,7) C.(6,8) D.(8,6)12.如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB=6cm,点D′到BC的距离是(
)A. B. C. D.二、填空题(每题4分,共24分)13.如图,两个四边形均为正方形,根据图形的面积关系,写出一个正确的等式__________.14.圆周率π=3.1415926…精确到千分位的近似数是_____.15.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.16.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.17.分解因式:____________.18.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.三、解答题(共78分)19.(8分)我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在中,是边上的中线,与的“广益值”就等于的值,可记为(1)在中,若,,求的值.(2)如图2,在中,,,求,的值.(3)如图3,在中,是边上的中线,,,,求和的长.20.(8分)计算(每小题4分,共16分)(1)(2)已知.求代数式的值.(1)先化简,再求值,其中.(4)解分式方程:+1.21.(8分)计算(1)(2)22.(10分)如图,已知点A、B以及直线l,AE⊥l,垂足为点E.(1)尺规作图:①过点B作BF⊥l,垂足为点F②在直线l上求作一点C,使CA=CB;(要求:在图中标明相应字母,保留作图痕迹,不写作法)(2)在所作的图中,连接CA、CB,若∠ACB=90°,∠CAE=,则∠CBF=(用含的代数式表示)23.(10分)如图,四边形ABCD中,,,,对角线BD平分交AC于点P.CE是的角平分线,交BD于点O.(1)请求出的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由;24.(10分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.25.(12分)某校团委举办了一次“中国梦我的梦”演讲比赛满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀.如图所示是这次竞赛中甲、乙两组学生成绩分布的条形统计图.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲63.4190%20%乙7.11.6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是______组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.26.如图,在△ABC中,∠A=30°,∠B=60°(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.【点睛】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题.2、D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】=;=积中不含x的一次项,解得,故选D.【点睛】本题主要考察多项式乘多项式。解题关键是熟练掌握计算法则.3、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.4、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000102=1.02×10-7,故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.6、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.7、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.8、D【解析】∵分式有意义,∴,∴且,解得且.故选D.9、C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A、直角三角形中两个锐角互余,故此选项错误;
B、相等的角不一定是对顶角,故此选项错误;
C、同旁内角互补,两直线平行,正确;
D、若|a|=|b|,则a=±b,故此选项错误;
故选C.【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.10、D【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:故选:D.【点睛】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.11、A【分析】根据点A、A1的坐标确定出平移规律,求出B1坐标,再根据中点的性质求解.【详解】∵,(8,4),∴平移规律为向右平移6个单位,向上平移4个单位,∵,∴点B1的坐标为(6,8),∴线段的中点的坐标为,即(7,6),故选A.【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、C【解析】分析:连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.详解:连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,AB=BCBD′=BD′AD′=CD′,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6−x)cm,在Rt△GD′C中x2+(6−x)2=(4)2,解得:x1=3−6,x2=3+6(舍去),∴点D′到BC边的距离为(3−6)cm.故选C.点睛:此题主要考查了折叠的性质,全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.二、填空题(每题4分,共24分)13、【分析】根据图形的分割前后面积相等,分别用大正方形的面积等于分割后四个小的图形的面积的和,即可得出结论.【详解】如图可知,把大正方形分割成四部分,大正方形的边长为,大正方形面积为,两个小正方形的面积分别为、,两个长方形的面积相等为,所以有,故答案为:..【点睛】分割图形,找到分割前后图形的关系,利用面积相等,属于完全平方公式的证明,找到、的关系式,即可得出结论.14、3.1【解析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5大于4,故进1,得3.1.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.1.故答案为3.1.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.15、SSS【解析】试题分析:根据作图得出AB=AD,CD=CB,根据全等三角形的判定得出即可.解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为SSS.考点:全等三角形的判定.16、1800【详解】多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.17、【分析】先提取公因式,再用公式法完成因式分解.【详解】原式【点睛】第一步,提取公因式;第二步,公式法;第三步,十字相乘法;三项以上的多项式的因式分解一般是分组分解.18、1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.【详解】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:解得:x2+y2=1,∴SA+SB=x2+y2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.三、解答题(共78分)19、(1)AC=9;(2)ABAC=-72,BABC=216;(3)BC=2OC=2,AB=10.【分析】(1)在Rt中,根据勾股定理和新定义可得AO2-OC2=81=AC2;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)作BD⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD是直角三角形,根据中线性质得出OA的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO为BC上的中线,在Rt中,AO2-OC2=AC2因为所以AO2-OC2=81所以AC2=81所以AC=9.(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=12,∠ABC=30°,∴AO=6,OB==,∴ABAC=AO2﹣BO2=36﹣108=﹣72,②取AC的中点D,连接BD,∴AD=CD=AC=6,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=12,∴AE=6,BE=,∴DE=AD+AE=12,在Rt△BED中,根据勾股定理得,BD=∴BABC=BD2﹣CD2=216;(3)作BD⊥CD,因为,,所以BD=2,因为,是边上的中线,所以AO2-OC2=-64,所以OC2-AO2=64,由因为AC2=82=64,所以OC2-AO2=AC2所以∠OAC=90°所以OA=所以OC=所以BC=2OC=2,在Rt△BCD中,CD=所以AD=CD-AC=16-8=8所以AB=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.20、(1)1;(2)7;(1);(4)【分析】(1)根据幂的乘方、平方差公式、去绝对值解决即可.(2)根据整式乘法法则,将原式变形成2a2+1a+1,再将变形成2a2+1a=6,代入计算即可.(1)根据分式的基本性质,先将原式化简成,将m的值代入计算即可.(4)根据等式和分式的基本性质,将分式方程化简成整式方程求解即可.【详解】(1),;,,=1.(2)解:原式=6a2+1a-(4a2-1)=6a2+1a-4a2+1=2a2+1a+1∵2a2+1a-6=02a2+1a=6原式=6+1=7(1)(4)方程两边都乘以得:解得:检验:当时,2(x﹣1)≠0,所以是原方程的解,即原方程的解为.【点睛】本题考查了幂的乘方、平方差公式、整式运算法则、分式的化简求值及解分式方程,解决本题的关键是熟练掌握整式和分式的运算法则,等式的基本性质.21、(1)-3;(2)6.【解析】把原式化为最简二次根式,合并即可得到结果.【详解】(1)原式=2-+-3=-3(2)原式=-4=10-4=6故答案为:(1);(2)。【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.22、(1)见详解;(2)见详解;(3)【分析】(1)1、在直线l外关于点B的另一侧任意取点M;2、以B为圆心,AM的长为半径作弧交l于H、G;3、分别以H、G为圆心,大于的长为半径作弧,两弧相交于点D;4、作直线BD,交直线l与点F,直线BF即为所求;(2)1、连接AB,分别以A、B为圆心,大于的长为半径作弧,两弧相交于点E、N;2、作直线EN,交直线l与点C,点C即为所求;(3)根据互余求解即可.【详解】解:(1)如图,直线BF即为所求;(2)如图,点C即为所求;(3)∵∴∴∵∠CAE=∴故答案为:.【点睛】本题考查的知识点是尺规作图,掌握尺规作图的基本方法是解此题的关键.23、(1);(2)BE+CP=BC,理由见解析.【分析】(1)先证得为等边三角形,再利用平行线的性质可求得结论;(2)由BP、CE是△ABC的两条角平分线,结合BE=BM,依据“SAS”即可证得△BEO≌△BMO;利用三角形内角和求出∠BOC=120°,利用角平分线得出∠BOE=∠BOM=60,求出∠BOM,即可判断出∠COM=∠COP,即可判断出△OCM≌△OCP,即可得出结论;【详解】(1)∵,,∴为等边三角形,∴∠ACD=,∵,∴∠BAC=∠ACD=;(2)BE+CP=BC,理由如下:在BC上取一点M,使BM=BE,连接OM,如图所示:
∵BP、CE是△ABC的两条角平分线,∴∠OBE=∠OBM=∠ABC,在△BEO和△BMO中,,∴△BEO△BMO(SAS),∴∠BOE=∠BOM=60,∵BP、CE是△ABC的两条角平分线,
∴∠OBC+∠OCB=在△ABC中,∠BAC+∠ABC+∠ACB=180,
∵∠BAC=60,
∴∠ABC+∠ACB=180-∠A=180-60=120,
∴∠BOC=180-(∠OBC+∠OCB)=180=180-×120=120,∴∠BOE=60,∴∠COP=∠BOE=60
∵△BEO≌△BMO,
∴∠BOE=∠BOM=60,
∴∠COM=∠BOC-∠BOM=120-60=60,
∴∠COM=∠COP=60,
∵CE是∠ACB的平分线,
∴∠OCM=∠OCP,
在△OCM和△OCP中,∴△OCM≌△OCP(ASA),
∴CM=CP,
∴BC=CM+BM=CP+BE,
∴BE+CP=BC.【点睛】本题是三角形综合题,主要考查了角平分线的定义、三角形内角和定理、全等三角形的判定和性质,熟练掌握三角形内角和定理、全等三角形的判定和性质,证明∠CFM=∠CFD是解题的关键.24、(1)见解析;(2);(3)见解析.【分析】(1)根据图形的对称性,分别作三点关于轴对称的点,连接三点即得所求图形;(2)根据图形和条件可以得出是等腰直角三角形,由勾股定理求出直角边长,通过面积公式计算即得;(3)根据等腰三角形三线合一,找到点关于直线的对称点,连接即得.【详解】(1)作图如下:由点的对称性,作出对称的顶点,连接的所求作图形;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨文化艺术治疗策略-洞察及研究
- 边缘人格障碍对精神分裂症患者的影响评估-洞察及研究
- 超导临界现象的物理机制-洞察及研究
- 电力系统稳定性-洞察及研究
- 绿色物流与可持续发展-第7篇-洞察及研究
- 黄芩汤诱导肝细胞存活机制-洞察及研究
- 鼻腔鼻窦恶性肿瘤的影像学研究-洞察及研究
- 高乌甲素的绿色化学合成策略及催化机理研究-洞察及研究
- 桶装水厂生产现场管理制度
- 山东省安全生产报告制度
- 初中寒假前心理健康教育主题班会课件
- 事业编退休报告申请书
- 原发性骨髓纤维化2026
- 半导体厂务项目工程管理 课件 项目6 净化室系统的设计与维护
- 河南省洛阳强基联盟2025-2026学年高二上学期1月月考英语试题含答案
- 2026年中考数学模拟试卷试题汇编-尺规作图
- 玻璃钢水箱安装详细技术方案
- 山东省烟台市开发区2024-2025学年上学期期末八年级数学检测题(含答案)
- 桂花香包制作课件
- 社会工作本科毕业论文
- (2025年)架子工考试模拟题(带答案)
评论
0/150
提交评论