


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥12.在平面直角坐标系中,已知点A(2,m)和点B(n,-3)关于y轴对称,则的值是()A.-1 B.1 C.5 D.-53.如图,在等腰中,顶角,平分底角交于点是延长线上一点,且,则的度数为()A.22° B.44° C.34° D.68°4.如果一个三角形的两边长分别为2、x、13,x是整数,则这样的三角形有()A.2个 B.3个 C.5个 D.13个5.如果将分式y2x+y(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式yA.不改变 B.扩大为原来的9倍 C.缩小为原来的13 D.扩大为原来的36.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是()A.3和11 B.7和7 C.6和8或7和7 D.3和11或7和77.下列命题是假命题的是()A.对顶角相等 B.两直线平行,同旁内角相等C.平行于同一条直线的两直线平行 D.同位角相等,两直线平行8.下列命题中,假命题是()A.对顶角相等B.平行于同一直线的两条直线互相平行C.若,则D.三角形的一个外角大于任何一个和它不相邻的内角9.下列运算正确的是()A. B.( C. D.10.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣3二、填空题(每小题3分,共24分)11.如图,在中,是的垂直平分线,且分别交于点和,,则等于_______度.12.若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.13.代数式(x﹣2)0÷有意义,则x的取值范围是_____.14.如果多项式可以分解成两个一次因式的积,那么整数的值可取________个.15.如图,在中,,是的垂直平分线,的周长为14,,那么的周长是__________.16.“的倍减去的差是正数”用不等式表示为_________.17.已知一次函数y=kx﹣4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.18.25的平方根是.三、解答题(共66分)19.(10分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)求△ABC的面积.20.(6分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.21.(6分)计算:.22.(8分)如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.(1)求证:AC⊥AB;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.23.(8分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)24.(8分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).25.(10分)如图所示,在中,,,,点从点开始沿边向点以的速度运动,同时另一点由点开始沿边向点以的速度运动.(1)后,点与点之间相距多远?(2)多少秒后,?26.(10分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据被开方式大于且等于零列式求解即可.【详解】由题意得x-1≥0,∴x≥1.故选D.【点睛】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.2、D【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后代入代数式进行计算即可得解.【详解】解:∵A(2,m)和B(n,-3)关于y轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由求出的度数.【详解】∵在等腰中,顶角,∴∠ACB=,又∵,∠ACB=∠E+∠CDE,∴∠E=∠CDE=.故选:C.【点睛】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.4、B【分析】先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.【详解】由题意可得,,解得,11<<15,∵是整数,
∴为12、13、14;则这样的三角形有3个,
故选:B.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系定理是解答的关键.5、A【解析】把x与y分别换为3x与3y,化简后判断即可.【详解】根据题意得:3y6x+3y则分式的值不改变,故选A.【点睛】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.6、C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22.当8为腰时,它的底边长,,能构成等腰三角形.当8为底时,它的腰长,,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.7、B【解析】解:A.对顶角相等是真命题,故本选项正确,不符合题意;B.两直线平行,同旁内角互补,故本选项错误,符合题意;C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B.8、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A,真命题,符合对顶角的性质;B,真命题,平行线具有传递性;C,假命题,若≥0,则;D,真命题,三角形的一个外角大于任何一个和它不相邻的内角;故选:C.【点睛】考查学生对命题的定义的理解及运用,要求学生对常用的基础知识牢固掌握.9、C【详解】A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;
B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.
C、(ab)3=a3b3,故本选项正确;
D、a6÷a2=a4同底数幂的除法,底数不变指数相减,故本选项错误.
故选C.【点睛】同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘.10、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【详解】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<1.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(每小题3分,共24分)11、20【分析】先根据三角形的内角和求出∠ABC的度数,再根据是的垂直平分线得出AE=BE,从而得出∠ABE=∠A=50°,再计算∠EBC即可.【详解】∵,∴∠ABC=180°-∠A-∠C=70°,∵是的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∴∠EBC=70°-50°=20°.故答案为20.【点睛】本题考查三角形的内角和定理和线段垂直平分线的性质,根据是的垂直平分线得出AE=BE是解题的关键.12、a=-1或a=-1.【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,
∴|2-a|=|2a+5|,
∴2-a=2a+5,2-a=-(2a+5)
∴a=-1或a=-1.故答案是:a=-1或a=-1.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.13、x≠2,x≠0,x≠1.【分析】根据分式的分母不为零、0的零次幂无意义来列出不等式,解不等式即可得到本题的答案.【详解】解:由题意得,x﹣2≠0,x≠0,x﹣1≠0,解得,x≠2,x≠0,x≠1,故答案为:x≠2,x≠0,x≠1.【点睛】本题考查的是分式有意义的条件、零指数幂,掌握分式的分母不为零,0的零次幂无意义是解题的关键.14、1【分析】根据题意先把1分成2个整数的积的形式,共有1种情况,m值等于这两个整式的和.【详解】解:把1分成2个整数的积的形式有11,(-1)(-1),22,(-2)(-2)所以m有1+1=5,(-1)+(-1)=-5,2+2=1,(-2)+(-2)=-1,共1个值.故答案为:1.【点睛】本题主要考查分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.15、1【分析】由垂直平分线的性质可得,故的周长可转化为:,由,可得,故可求得的周长.【详解】∵是的垂直平分线,∴,∵的周长为14,∴,又,∴,∴的周长.故答案为:1.【点睛】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,解题的关键是运用线段的垂直平分线的性质.16、【分析】根据题意列出不等式即可得解.【详解】根据“的倍减去的差是正数”列式得,故答案为:.【点睛】本题主要考查了不等式的表示,熟练掌握不等式的文字语言及数字表达式是解决本题的关键.17、y=﹣x﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k值,即可.【详解】令x=0,则y=0﹣1=﹣1,令y=0,则kx﹣1=0,x=,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(,0),∴OA=1,OB=-,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【点睛】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.18、±1【解析】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±1)2=21,∴21的平方根是±1.三、解答题(共66分)19、(1)图见解析,点A1的坐标(3,−4);点B1的坐标(1,−2);点C1的坐标(1,−1);(2)1【分析】(1)分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;
(2)利用割补法求解可得.【详解】(1)如图,△A1B1C1即为所求图形:点A1的坐标(3,−4),点B1的坐标(1,−2),点C1的坐标(1,−1);(2)S△ABC=4×3−−−=12−2−3−2=1.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.20、(1)画图见解析;(2)画图见解析.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;
(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.【详解】(1)如图①所示:(2)如图②所示.【点睛】考查了勾股定理,熟练掌握勾股定理是解本题的关键.21、8【分析】根据开平方,开立方,平方和绝对值的运算法则进行计算即可.【详解】解:原式=5+4+2﹣3=8.【点睛】本题主要考查了实数的混合运算,解此题的关键在于熟练掌握其知识点.22、(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)【分析】(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,BC2,AC2,利用勾股定理的逆定理即可证明;(2)过D作DF⊥y轴于F,根据题意得到BF=FC,F(0,1),设直线AC:y=kx+b,利用A和C的坐标求出表达式,从而求出点D坐标;(3)分AB=AP,AB=BP,AP=BP三种情况,结合一次函数分别求解.【详解】解:(1)∵,得:,∴B(0,3),C(0,﹣1),∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴AB2=AO2+BO2=12,AC2=AO2+OC2=4,BC2=16∴AB2+AC2=BC2,∴∠BAC=90°,即AC⊥AB;(2)如图1中,过D作DF⊥y轴于F.∵DB=DC,△DBC是等腰三角形∴BF=FC,F(0,1),设直线AC:y=kx+b,将A(﹣,0),C(0,﹣1)代入得:直线AC解析式为:y=x-1,将D点纵坐标y=1代入y=x-1,∴x=-2,∴D的坐标为(﹣2,1);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0,代入y=x+3,可得:x=,∵OB=3,∴BE=,∴∠BEO=30°,∠EBO=60°∵AB=,OA=,OB=3,∴∠ABO=30°,∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣,代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).【点睛】本题考查了解二元一次方程组,勾股定理的逆定理,含30°的直角三角形,等腰三角形的性质,一次函数的应用,知识点较多,难度较大,解题时要注意分类讨论.23、(1)180°;(2)360°;(3)1080°.【分析】(1)根据三角形外角的性质和三角形内角和定理可得∠A+∠B+∠C+∠D+∠E的度数;
(2)根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,由此即可求出答案.【详解】(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2))∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)观察可以发现图(1)到图(2)可以发现每截去一个角,则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.【点睛】主要考查了多边形的内角与外角之间的关系.有关五角星的角度问题是常见的问题,其5个角的和是180度.解此题的关键是找到规律利用规律求解.24、(1)详见解析;(2)详见解析.【解析】(1)直接利用角平分线的性质以及线段垂直平分线的性质分析得出答案;(2)直接利用角平分线的作法以及线段垂直平分线的作法得出答案.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融科技在职业培训与发展的作用考核试卷
- 数据库效率分析与优化试题及答案
- 知识盲点信息系统监理师试题及答案
- 计算机三级考试准备方案试题及答案
- 建筑砌块施工中的模板设计与支撑体系考核试卷
- 行政组织领导与影响力考题及答案
- 金属工艺品的消费者体验设计与优化考核试卷
- 公路施工阶段风险试题及答案分析
- 公路工程施工图识读试题及答案
- 计算机三级数据库架构审查试题及答案
- 2025年网络与信息安全法律知识考试试题及答案
- 货物实时监控系统行业跨境出海项目商业计划书
- 2024年吐鲁番市高昌区招聘社区工作者笔试真题
- 糖尿病中医健康教育讲座
- 地《巴西》第一课时教学设计-2024-2025学年七年级地理下册(人教版2024)
- 27万吨年丙烯腈项目初步设计说明书
- 装配式建筑概论课件:BIM技术在装配式建筑中的应用
- 2023-2024学年上海市宝山区八年级(下)期末数学试卷 (含答案)
- 2025年高考作文预测范文10篇
- 四川省九师联盟2025届高三仿真模拟卷物理试卷及答案(HG)
- 乙状结肠癌试题及答案
评论
0/150
提交评论