




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河北省秦皇岛市某学校数学高职单招测试试题(含答案)一、单选题(20题)1.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
2.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.
B.
C.
D.
3.下列函数为偶函数的是A.
B.
C.
D.
4.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
5.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限6.若102x=25,则10-x等于()A.
B.
C.
D.
7.已知集合,则等于()A.
B.
C.
D.
8.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/89.一元二次不等式x2+x-
6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)10.直线4x+2y-7=0和直线3x-y+5=0的夹角是()A.30°B.45°C.60°D.90°11.函数y=-(x-2)|x|的递增区间是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)12.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1
B.
C.
D.2
13.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m
B.若l//α,m⊥l,则m⊥α
C.若l//α,m//α,则l//m
D.若l⊥α,l///β则a⊥β
14.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)15.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-816.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)17.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0
B.对任意x∈R,都有x2<0
C.存在x0∈R,使得x02≥0
D.不存在x∈R,使得x2<0
18.已知互为反函数,则k和b的值分别是()A.2,
B.2,
C.-2,
D.-2,
19.已知A(3,1),B(6,1),C(4,3)D为线段BC的中点,则向量AC与DA的夹角是()A.
B.
C.
D.
20.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx二、填空题(10题)21.若直线的斜率k=1,且过点(0,1),则直线的方程为
。22.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.23.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.24.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.25.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.26.cos45°cos15°+sin45°sin15°=
。27.等比数列中,a2=3,a6=6,则a4=_____.28.log216+cosπ+271/3=
。29.若一个球的体积为则它的表面积为______.30.设A=(-2,3),b=(-4,2),则|a-b|=
。三、计算题(10题)31.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.32.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。33.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2.34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.35.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。38.解不等式4<|1-3x|<739.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.40.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。四、证明题(5题)41.己知sin(θ+α)=sin(θ+β),求证:42.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.43.若x∈(0,1),求证:log3X3<log3X<X3.44.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.45.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.五、综合题(5题)46.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.47.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)48.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.49.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.50.六、解答题(5题)51.52.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.53.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D154.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.55.解不等式4<|1-3x|<7
参考答案
1.D
2.B
3.A
4.B三角函数的诱导公式化简sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα
5.D三角函数值的符号∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的终边在第四象限,
6.B
7.B由函数的换算性质可知,f-1(x)=-1/x.
8.D
9.A
10.B
11.A
12.C四棱锥的直观图.四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长
13.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C
14.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
15.C
16.B由题可知,3-x2大于0,所以定义域为(-3,3)
17.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,
18.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.
19.C
20.D
21.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。22.2n-123.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.24.12,高三年级应抽人数为300*40/1000=12。25.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.
26.,
27.,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
28.66。log216+cosπ+271/3=4+(-1)+3=6。29.12π球的体积,表面积公式.
30.。a-b=(2,1),所以|a-b|=31.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x
-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
32.
33.34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
35.
36.
37.
38.
39.
40.
41.
42.
43.44.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
45.∴PD//平面ACE.46.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为47.48.解:(1)斜率k
=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年货物买卖合同协议范本
- 2025设备采购合同书范本设备采购合同书样本
- 2025版驾驶员劳动合同范本
- 2025店面房屋租赁合同样本
- 工业互联网平台开发者生态建设2025年风险管理与合规报告
- 2025技术的商业机密保密合同范本
- 2025年健康评估期中试卷及答案
- 永城三中考试试卷及答案
- 道路交通法考试题及答案
- 2025商业店铺买卖合同解除协议书
- 朝阳河流域生态修复综合治理工程环评报告
- 2025年汽车租赁公司车辆托管及运营管理合同
- 2024新版2025秋教科版科学二年级上册全册教案教学设计
- (2025秋新版)人教版八年级历史上册全册教案
- 企业向个人还款合同范本
- 钢模板安全知识培训课件
- 2025-2026学年人民版小学劳动技术六年级上册教学计划及进度表
- 新学期三年级班主任工作计划(16篇)
- 接种疫苗预防流感课件
- 游戏体验寻规律(教学设计)-2024-2025学年人教版(2024)小学信息技术五年级全一册
- GB/T 45707-2025皮革铬鞣鞋面用坯革规范
评论
0/150
提交评论