下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.52.已知复数满足,且,则()A.3 B. C. D.3.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.5.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.6.若的内角满足,则的值为()A. B. C. D.7.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.28.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形9.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,10.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]11.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.12.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中为虚数单位,则的模为_______________.14.已知函数,则不等式的解集为____________.15.已知向量,,,若,则______.16.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.19.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若数列满足,求数列的前2020项的和.20.(12分)已知在中,角,,的对边分别为,,,且.(1)求的值;(2)若,求面积的最大值.21.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.22.(10分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【题目详解】依题意得,,,因此该双曲线的离心率.【答案点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.2、C【答案解析】
设,则,利用和求得,即可.【题目详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【答案点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.3、B【答案解析】
分别判断充分性和必要性得到答案.【题目详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【答案点睛】本题考查了充分必要条件,属于简单题.4、A【答案解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【题目详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【答案点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.5、B【答案解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.6、A【答案解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【题目详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【答案点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.7、A【答案解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【题目详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【答案点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.8、B【答案解析】
化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【题目详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【答案点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.9、A【答案解析】
依题意问题是,然后按直到型验证即可.【题目详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.10、D【答案解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【答案点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.11、D【答案解析】
首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【题目详解】因为偶函数在减,所以在上增,,,,∴.故选:D【答案点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.12、C【答案解析】
利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【题目详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【答案点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
利用复数模的计算公式求解即可.【题目详解】解:由,得,所以.故答案为:.【答案点睛】本题考查复数模的求法,属于基础题.14、【答案解析】
,,分类讨论即可.【题目详解】由已知,,,若,则或解得或,所以不等式的解集为.故答案为:【答案点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.15、-1【答案解析】
由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论.【题目详解】由已知,∵,∴,.故答案为:-1.【答案点睛】本题考查向量垂直的坐标运算.掌握向量垂直与数量积的关系是解题关键.16、【答案解析】
对①,根据周期的定义判定即可.对②,根据偶函数满足的性质判定即可.对③,举出反例判定即可.对④,求解不等式再判定即可.【题目详解】解:因为当时,所以由周期函数的定义知不是函数的周期,故正确;对于定义在上的函数,若,由偶函数的定义知函数不是偶函数,故正确;当时不满足则“”不是“”成立的充分不必要条件,故错误;若实数满足则所以成立,故正确.正确命题的序号是.故答案为:.【答案点睛】本题主要考查了命题真假的判定,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18、(Ⅰ)(Ⅱ)【答案解析】
(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【题目详解】(Ⅰ)当时,,则.所以.又,故所求切线方程为,即.(Ⅱ)依题意,得,即恒成立.令,则.①当时,因为,不合题意.②当时,令,得,,显然.令,得或;令,得.所以函数的单调递增区间是,,单调递减区间是.当时,,,所以,只需,所以,所以实数的取值范围为.【答案点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.19、(1),;(2).【答案解析】
(1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式;(2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和.【题目详解】(1)依题意得:,所以,所以解得设等比数列的公比为,所以又(2)由(1)知,因为①当时,②由①②得,,即,又当时,不满足上式,.数列的前2020项的和设③,则④,由③④得:,所以,所以.【答案点睛】本题考查等差数列和等比数列的通项公式、性质,错位相减法求和,考查学生的逻辑推理能力,化归与转化能力及综合运用数学知识解决问题的能力.考查的核心素养是逻辑推理与数学运算.是中档题.20、(1);(2).【答案解析】分析:(1)在式子中运用正弦、余弦定理后可得.(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得.详解:(1)由题意及正、余弦定理得,整理得,∴(2)由题意得,∴,∵,∴,∴.由余弦定理得,∴,,当且仅当时等号成立.∴.∴面积的最大值为.点睛:(1)正、余弦定理经常与三角形的面积综合在一起考查,解题时要注意整体代换的应用,如余弦定理中常用的变形,这样自然地与三角形的面积公式结合在一起.(2)运用基本不等式求最值时,要注意等号成立的条件,在解题中必须要注明.21、(1);(2)见解析.【答案解析】
(1)在中,计算出的值,可得出的值,进而可得出的值,由此可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆方程联立,列出韦达定理,根据已知条件得出,利用韦达定理和斜率公式化简得出与所满足的关系式,代入直线的方程,即可得出直线所过定点的坐标.【题目详解】(1)在中,,,,,,,,因此,椭圆的标准方程为;(2)由题不妨设,设点,联立,消去化简得,且,,,,,∴代入,化简得,化简得,,,,直线,因此,直线过定点.【答案点睛】本题考查椭圆方程的求解,同时也考查了椭圆中直线过定点的问题,考查计算能力,属于中等题.22、(1)证明见解析(2)【答案解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 怎么跟淘宝店合作协议书
- 在校勤工俭学协议书
- 楼房出租协议书
- 员工工资保密协议书范本
- 2025科技公司电脑采购合同范文
- 2025年法考国际私法试题及答案
- 住建中心面试题及答案
- 安全检查工题库及答案解析
- 母婴护理考试实训题库及答案解析
- 创新人才培养机制-第1篇-洞察与解读
- 化学沉淀及氧化还原法课件
- 炎德英才大联考2024年物理高二上期末统考模拟试题含解析
- 阅己+悦己+越己+-高中认识自我心理健康主题班会 高中 班会课件
- 工程力学(静力学与材料力学)课后习题答案(单辉祖)
- 矩阵论知到章节答案智慧树2023年哈尔滨工程大学
- 污水处理项目(厂区部分)工程地质勘察报告(详细勘察)
- 液闪使用说明书
- 沪教版牛津小学英语单词表一到六【附翻译音标 精校打印版】
- GB/T 22086-2008铝及铝合金弧焊推荐工艺
- 历届全国“挑战杯”课外学术科技作品竞赛获奖作品一览表 第一届到第十二届
- 11466现代企业人力资源管理概论第11章
评论
0/150
提交评论