版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
十一、电子能谱
(ElectronSpectroscopyforSurface
Analysis)近代分析实验原理(Introductionofmodernanalyticalmethods)121.BasicPrinciplesElectronSpectroscopyelementalanalysisEmitcharacteristicelectronsPhotoelectronsAugerelectronsAugerelectronspectroscopy(AES)X-rayphotoelectronspectroscopy(XPS)surfacechemicalanalysis(generally20–2000eV)(adepthof10nmorless)3Emissionprocessesofcharacteristicelectrons:(a)a1sphotoelectron;and(b)aKL1L2,3Augerelectron41.1X-rayPhotoelectronSpectroscopyTheX-rayphotoelectronisanelectronejectedfromanelectronshellofanatomwhentheatomabsorbsanX-rayphoton.thebindingenergyoftheatom’sphotoelectron(EB):aphotoelectronwithkineticenergyEKtheenergyrequiredforanelectrontoescapefromamaterial’ssurfacecharacteristicvaluesidentifieschemicalelementsthebindingenergyIncidentX-rayphoton5XPSspectrumofanoxidizedaluminumsurface.peaksfromAugerelectronselementsymbolplusashellsymbol6Thephotoelectronsemittedbysubshellsp,dandfarecommonlymarkedwithanadditionalfractionnumberJ,71.2AugerElectronSpectroscopyAugerelectronswerenamedafterPierreAugerwho,togetherwithLiseMeitner,discoveredAugerelectronemissionin1920s.anincidentelectronknocksoutaKshellelectron,aL1shellelectronrefillstheKshellvacancy,andaL2,3shellelectronisejectedastheAugerelectron.thebindingenergyofelectronshell-Φ8AESspectraofanoxidizedaluminumsurface:(a)directspectrumofintensityversuskineticenergyofAugerelectrons;and(b)differentialspectrumofintensityversuskineticenergyofAugerelectrons.9SchematiccomparisonofAugerpeakintensitywithotherelectronsescapedfromasolidsurface.Eoindicatesenergyofincidentelectrons.ThekineticenergyofelectronscanbedividedintothreeregionsI,IIandIIIfromlowtohigh.TheprimaryelectronsejectedfromasolidsurfacebyinelasticscatteringcomprisethebackgroundofanAESspectrumintheregionofhighkineticenergieswhilethesecondaryelectronscomprisethebackgroundintheregionoflowkineticenergies.102.InstrumentationStructureofanelectronspectrometer(combiningXPSandAES)10−8–10−10mbarPreventthescatteringKeepthesurfacecleanstainlesssteelcrushedcoppergasketsanelectrongun,anX-raygunandasharedanalyzerofelectronenergy.magneticshielding112.1SourceGuns2.1.1X-rayGunNon-monochromaticX-rayradiationfromanX-raygunwithanAltarget.ThecharacteristicAlKαlineisatabout1.5keV.commonlyAlorMgLowerenergyX-raysnarrowlinewidthXPSrequiresalinewidthlessthan1.0eVtoensuregoodenergyresolution.BothAlKαandMgKαexhibitlinewidthslessthan1.0eVandalsohavesufficientenergies(>1000eV)forphotoelectronexcitation.usesbothnon-monochromaticandmonochromaticX-raysourcesAlKαandMgKα1.4866and1.2536keVCuKαandMoKα8.04keVand17.44keV12AnX-raygunwithtwo-anodes.Twotaperedanodefaces(oneisAlandtheotherisMg)havesemi-circularfilaments,whichareneargroundpotential.Anaccelerationvoltageofabout15kVbetweenafilamentandanodegeneratesX-raysthatexitthroughanAlwindow.switchingbetweenMgKαandAlKα,AlKαandMgKαare1.4866and1.2536keVlinewidthlessthan1.0eV132.1.2ElectronGunsimilartothoseusedinelectronmicroscopy(LaB6andfieldemissionguns)2.1.3IonGunThefunctionsofaniongunaretwofold.First,itprovidesahighenergyionfluxtocleansamplesurfacesbeforeexamination.Thesecondfunctionoftheiongunistosputteroutsampleatomslayerbylayersothatanelementaldepthprofilecanberevealed.(argonion)Energy:0.5to5.0keVfocusedtoadiameterdowntoseveraltensofmicrometers.scanasurfaceareaaslargeas10×10mm142.2ElectronEnergyAnalyzersWorkingprinciplesofaconcentrichemisphericalanalyzer.concentrichemisphericalanalyzer(CHA)(hemisphericalsectoranalyzer(HSA))NegativeTheCHAonlyallowstheelectronswithenergyE=eVo,whichareinjectedtangentiallytothemediansurface,topassthroughitschannelandreachthedetector.V0passenergy15constantanalyzerenergy(CAE)modeXPSconstantretardingratio(CRR)modeAESelectronretardationElectronenergyreductionCHAXPSrequireshighabsoluteresolutionofabout0.5eVinthewholerangeofaspectrum.CHAhasarelativeresolutionlimit.ForE=200eV,aCHArequiresarelativeresolutionof0.025tosatisfytheXPSabsoluteresolutionof0.5eV.However,forE=1500eV,aCHArequiresarelativeresolutionof0.003todoso,whichisnotpractical.lowCHApassenergy:10–100eVAugeranalysisrequiressuppressingtheelectronsignalatthelowenergyendofitsspectrum.CHA:LowtransmissionratewithlowpassenergyWhenaconstantretardationratioisapplied,alowAugerelectronenergygenerateslowCHApassenergy.163.CharacteristicsofElectronSpectra3.1PhotoelectronSpectraAnXPSspectrumofsilverexcitedMgKαwithpassenergyof100eV.thevalence-levelpeaktheAugerpeakscore-levelphotoelectronpeaksElementalanalysisPrimarilyusefulinstudiesoftheelectronicstructureofmaterials.Thevalence-levelpeaksarethoseatlowbindingenergy(0–20eV)17ExamplesofseveraltypesofsatellitepeaksinXPSspectra:(a)shake-uppeaksinaCuOspectrum;(b)shake-uppeaksandmultipletsplittinginaNiOspectrum;and(c)plasmonlosspeakinacleanAlspectrum.resultfrominteractionbetweenaphotoelectronandavalenceelectron.hasunpairedelectronsinitsvalencelevelexcitescollectivevibrationsinconductionelectronsinametalNousefulinformation183.2AugerElectronSpectraAugerspectraofacontaminatedtungstenfoilacquiredinafixedretardingratiomodewith0.6%relativeresolution:(a)directspectrum;and(b)differentialspectrum.ElementsP,N,O,W,Careindicated.thefirstderivativeofthecurvePeak
positionslightlydifferent.19ChartofprincipalAugerelectronenergiesofKLL,LMMandMNNlinesAlightelementisoftenidentifiedfromitsKLLAugerlines,whichdominateintheAugerspectrumrange.However,foranelementwithatomicnumberhigherthan15,eitherLMMorMNNAugerlinesaredominant.TheLMMlinesforanelementaredividedintothree,astriplets.TheLMMtripletfeatureresultsfromthedifferenceinsubshellsinvolvedintheAugerprocess.20PrincipalAugerKLLpeaksoflightelements,Be,B,C,N,O,FandNa.KL23L23isthemostvisibleKLLpeakforeachelement;forexample,OKL1L1(468eV),OKL1L23(483eV)andOKL23L23(503eV).21TripletpeaksofAugerspectraforCr,MnandFe.TheLMMtripletsoccurintransitionmetals.ThelowkineticenergypeaksareofL2,3VVwhereVrepresentsthelevelofvalenceelectrons.224QualitativeandQuantitativeAnalysisChemicalanalysisidentifychemicalelementschemicalstatusthespatialdistributionsofelements4.1QualitativeAnalysis23PeakIdentificationThepeaksinanAESspectrumcanbeidentifiedbycomparingtheexperimentalpeakswithstandardpeaksfoundinreferencebooksorcomputerdatabases.PeakidentificationsinXPSspectra,however,aremorecomplicatedbecauseAugerpeaksmaybepresent.distinguishtheAugerpeaksfromphotoelectronpeaksAnAugerpeakwillshiftinapparentbindingenergyinanXPSspectrumwhenwechangetheX-raysource.Forexample,anAugerpeakshiftsby233eVintheXPSspectrumwhenwechangetheradiationfromMgKα(1253.6eV)toAlKα(1486.6eV).CalibrationC1speakat284.8eVFixedPeakpositionsinanXPSspectrumarelikelytobeaffectedbyspectrometerconditionsandthesamplesurface.24ChemicalShiftsChemicalshiftsofbindingenergypeaksforanelementarecausedbythesurroundingchemicalstateoftheelement.XPSspectrumofpoly(vinyltrifluoroacetate):(a)C1s;and(b)O1swithmonochromaticAlKαexcitation.聚(乙烯基三氟乙酸)carefullyresolvetheoverlappedpeakswithassistanceofcomputersoftware.25ChartofcarbonchemicalshiftinXPSspectra.Thelargerthenumberofelectronstransferred,thehigherthechemicalshift.26ComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.ChemicalshiftsalsooccurinAESspectra,andthechemicalshiftscanbesignificantlylargerthantheshiftsinXPS.Forexample,theshiftbetweenmetallicandoxideAlpeaksofAlKL2L3ismorethan5eVwhilethecorrespondingshiftofAl2pbindingenergyisonlyabout1eVComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.27InsulatingSample:ChargeaccumulationonsurfaceUncertainΦchargeneutralizationForAES,thissurfacechargeproblemwithinsulatingsamplesismoredifficulttoovercomebecausetheelectronshavetoberemovedfromtheinsulatingsurface,insteadofcompensatingforelectronloss.AESdoesnotworkwellwithtotallyinsulatingmaterials.XPS28CompositionImagingsimilartotheEDSmappingResolution:10μm(XPS);10nm(AES)Comparisonbetweenimagesofgold-coatedstainlesssteel:(a)ascanningelectronmicroscope(SEM)secondaryelectronimage;(b)ironAugerimage;(c)oxygenAugerimage;(d)goldAugerimage;and(e)nickelAugerimage.29XPSimagesofaTiAlNthinfilmonastainlesssteelsubstrate:(a)Ti2pphotoelectronimage;and(b)Fe2pphotoelectronimage.Theoxidizedfilmcontainsironthathasmigratedfromthesubstrate.304.2QuantitativeAnalysisAESsensitivityfactorsnormalizedtotheCuLMMlinefor10keVelectronradiation.Sensitivityfactorsarecalculatedfromthepeak
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理服务合同协议(2025年安保)
- 课件知识框架
- 案场安全培训教学课件
- 医疗资源整合与优化配置研究进展
- 2026年车载多功能智能支架项目商业计划书
- 中医理疗对儿童常见病的治疗与护理
- 案件质量培训课件
- 移动医疗APP设计创新
- 标准有效性培训课件
- 医学心理学应用与临床
- 2026年及未来5年中国锻造件行业市场深度分析及发展前景预测报告
- 2025年荆楚理工学院马克思主义基本原理概论期末考试真题汇编
- 2026年恒丰银行广州分行社会招聘备考题库带答案详解
- 纹绣风险协议书
- 【语文】湖南省长沙市雨花区桂花树小学小学一年级上册期末试卷(含答案)
- 贵港市利恒投资集团有限公司关于公开招聘工作人员备考题库附答案
- 2026年及未来5年市场数据中国大型铸锻件行业市场深度分析及投资战略数据分析研究报告
- 钢筋焊接施工安全技术交底
- 销售授权书模板
- 2021年10月全国自学考试00265西方法律思想史试题答案
- 2023年关于宁波市鄞州粮食收储有限公司公开招聘工作人员笔试的通知笔试备考题库及答案解析
评论
0/150
提交评论