版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]2.若,则()A. B. C. D.3.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12 B. C. D.4.已知为虚数单位,若复数,则A. B.C. D.5.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.96.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.7.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)8.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.9.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定10.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.11.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.312.复数满足,则复数在复平面内所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为__________.14.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.15.设命题:,,则:__________.16.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.18.(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内各门诊就诊人次占李村总就诊人次的比例70%10%15%5%如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)的分布列与期望.19.(12分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.20.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.21.(12分)已知矩形纸片中,,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成θ的函数,并确定θ的取值范围;(2)求l的最小值及此时的值;(3)问当θ为何值时,的面积S取得最小值?并求出这个最小值.22.(10分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.828
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【答案点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2、D【答案解析】
直接利用二倍角余弦公式与弦化切即可得到结果.【题目详解】∵,∴,故选D【答案点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.3、C【答案解析】
过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【题目详解】在和中,,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【答案点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.4、B【答案解析】
因为,所以,故选B.5、B【答案解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.【题目详解】根据题意,,则在中,又,则则则则故选:B【答案点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.6、D【答案解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.7、C【答案解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【题目详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.8、B【答案解析】
设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【题目详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【答案点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.9、A【答案解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【题目详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【答案点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题10、B【答案解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【题目详解】由题可知.所以令,得令,得故选:B【答案点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.11、C【答案解析】
否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【题目详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【答案点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.12、B【答案解析】
设,则,可得,即可得到,进而找到对应的点所在象限.【题目详解】设,则,,,所以复数在复平面内所对应的点为,在第二象限.故选:B【答案点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、0.42【答案解析】
高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【题目详解】由已知,高一家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【答案点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.14、【答案解析】
证明平面,于是,利用三棱锥的体积公式即可求解.【题目详解】平面,平面,,又.平面,是的中点,.
故答案为:【答案点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.15、,【答案解析】
存在符号改任意符号,结论变相反.【题目详解】命题是特称命题,则为全称命题,故将“”改为“”,将“”改为“”,故:,.故答案为:,.【答案点睛】本题考查全(特)称命题.对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.16、,【答案解析】
根据是偶函数和的图象关于点对称,即可求出满足条件的和.【题目详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【答案点睛】本题主要考查了正弦型三角函数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【答案解析】
(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;(Ⅱ)设直线,直线,,,,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.【题目详解】(Ⅰ)设的周长为,则,当且仅当线段过点时“”成立.,,又,,椭圆的标准方程为.(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.设,,,,,.将直线的方程代入椭圆方程得:.,,.同理,.由得,此时.直线,联立直线与直线的方程得,即点在定直线.【答案点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的逻辑推理能力和运算能力,属于难题.18、(Ⅰ);(Ⅱ)的发分布列为:X2060140400P0.70.10.150.05期望.【答案解析】
(Ⅰ)由表2可得去各个门诊的人次比例可得2000人中各个门诊的人数,即可知道去三甲医院的总人数,又有60岁所占的百分比可得60岁以上的人数,进而求出任选2人60岁以上的概率;(Ⅱ)由去各门诊结算的平均费用及表1所报的百分比可得随机变量的可能取值,再由概率可得的分布列,进而求出概率.【题目详解】解:(Ⅰ)由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为,,,,而三甲医院门诊就诊的人次中,60岁以上的人次占了,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:人,设从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的事件记为,则;(Ⅱ)由题意可得随机变量的可能取值为:,,,,,,,,所以的发分布列为:X2060140400P0.70.10.150.05所以可得期望.【答案点睛】本题主要考查互斥事件、随机事件的概率计算公式、分布列及其数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.19、(1)极小值点为,极小值为,无极大值;(2)证明见解析【答案解析】
先对函数求导,结合已知及导数的几何意义可求,结合单调性即可求解函数的极值点及极值;令,问题可转化为求解函数的最值,结合导数可求.【题目详解】(1)由题得函数的定义域为.,由已知得,解得∴,令,得令,得,∴在上单调递增.令,得∴在上单调递减∴的极小值点为,极小值为,无极大值.(2)证明:由(1)知,∴,令,即∵,,∴恒成立.∴在上单调递增又,∴在上恒成立∴在上恒成立∴,即∴【答案点睛】本题考查了利用导数研究函数的极值问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平,属于中档题.20、(1);(2)【答案解析】
(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【题目详解】(1),则,即,故,,故.(2),故,故.当时等号成立.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津市滨海新区大港医院2026年公开招聘高层次人才备考题库及参考答案详解1套
- 2026年“重庆人力”所属企业飞驶特公司招聘:派往某国有企业检测运维岗招聘备考题库及一套参考答案详解
- 2026年蚌埠市怀远县教育局所属事业单位紧缺专业人才引进(校园招聘)备考题库及答案详解(易错题)
- 新型城镇化推进成果承诺书文本(8篇)
- 曲靖经开区卓然学校2026年储备教师招聘备考题库(含答案详解)
- 企业成本分析与成本控制方案工具
- 加油站环保设施改造合同协议
- 2026年西昌市人民医院公开招聘临床护士的备考题库及答案详解参考
- 中山市人民医院2026年招聘备考题库(第一期)有完整答案详解
- 人保财险昆明市分公司2026届校园招聘8人的备考题库及完整答案详解一套
- 利用EXCEL画风机特性曲线-模版
- 人体工效评估程序
- EPC工程总承包项目设计及施工的配合制度
- 西南大学PPT 04 实用版答辩模板
- 国家开放大学电大《政治学原理》形考任务1及4网考题库答案
- 管理百年智慧树知到答案章节测试2023年
- 国家开放大学《刑法学(1)》形成性考核作业1-4参考答案
- 工艺美术专业课程配套练习二
- 2022“博学杯”全国幼儿识字与阅读大赛选拔试卷
- 临床试验监查计划
- 安全吹哨人管理制度
评论
0/150
提交评论