




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheApplicationandCalculationofBondOrbitalModelonQuantumSemiconductor
鍵結軌道理論在量子半導體之應用與計算TheApplicationandCalculatio1IntroductionIntroduction2WhyisthechoosingtheBOM?ahybridorlinkbetweenthek.pandthetight-bindingmethodscombiningthevirtuesofthetwoaboveapproaches--thecomputationaleffortiscomparabletothek.p
method--avoidingthetediousfittingprocedurelikethe
tight-bindingmethod--itisadequateforultra-thinsuperlattice--theboundaryconditionbetweenmaterialsistreatedin
thestraight-forwardmanner--itsflexibilitytoaccommodateotherwiseawkward
geometriesWhyisthechoosingtheBOM?a3Theimprovementofthebondorbitalmodel(BOM):the(hkl)-orientedBOMHamiltoniantheBOMHamiltonianwiththesecond-neighborinteractiontheBOMintheantibondingorbitalframeworktheBOMwithmicroscopicinterfaceperturbation(MBOM)thek.pformalismfromtheBOMTheimprovementofthebondor4BondOrbitalModelBondOrbitalModel5Whatisthebondorbitalmodel?atight-binding-likeframeworkwiththes-andp-likebasisorbitaltheinteractionparametersdirectlyrelatedtotheLuttingerparametersWhatisthebondorbitalmodel6Zinc-blendeLatticeStructure:Zinc-blendeLatticeStructure:7TheBOMmatrixelements:where:TheinteractionparametersEsandEp:on-siteparameters
Ess,Esx,Exx,Exy,andEzz:thenearest-neighbor
interactionparametersTheBOMmatrixelements:where:8TheBOMmatrix:wherewithH(k)=TheBOMmatrix:wherewithH(k)=9TakingTaylor-expansionontheBOMmatrix:
(uptothesecondorder)whereandH(k)=---TakingTaylor-expansiononthe10RelationsbetweenBOMparametersandLuttingerparametersVBMCVBM/3RelationsbetweenBOMparamete11BulkBandstructure:
(001)-orientationBulkBandstructure:
(001)-orie12SuperlatticeBandstructure:
(001)-orientationSuperlatticeBandstructure:
(013Theorthogonaltransformationmatrix:wheretheanglesandarethepolarandazimuthalanglesofthenewgrowthaxisrelativetotheprimarycrystallographicaxes.
Theorthogonaltransformation14BulkInAsBandstructure:
(111),(110),(112),(113),and(115)-orientationBulkInAsBandstructure:
(111)15InAs/GaSbSuperlatticeBandstructure:
(111),(110),(112),(113),and(115)-orientationInAs/GaSbSuperlatticeBandstr16Thesecond-neighborbondorbital(SBO)model:WhereandH(k)=Thesecond-neighborbondorbit17BulkBandstructure:
WiththeSecondNearestNeighborInteraction:BulkBandstructure:
WiththeS18BulkBandstructureintheAntibondingOrbitalModel:BulkBandstructureintheAnti19BondOrbitalModelwithMicroscopicEffectsBondOrbitalModelwithMicros20Forthecommonatom(CA)heterostructureeg:(AlGa)As/GaAs,InAs/GaAsForthenocommonatom(NCA)heterostructureeg:InAs/GaSb,(InGa)/As/InP--InAs/GaSbwithIn-SbandGa-Asheterobondsattheinterfaces--(InGa)As/InPwith(InGa)-PandIn-AsheterobondsattheinterfacesForthecommonatom(CA)heter21The(001)InAs/GaSbsuperlattice:theplanesofatomsarestackedinthegrowthdirectionasfollows...GaSbGaSbInAsInAs....fortheoneinterface;and...InAsInAsGaSbGaSb....forthenextinterface.The(001)InAs/GaSbsuperlatti22Theextractingofmicroscopicinformation:thes-andp-likebondorbitalsexpandedintermsofthetetrahedral(anti)bondingorbitals
andinsteadofscalarpotentialbypotentialoperator~thisistheso-calledmodifiedbondorbitalmodel(MBOM)~=(+++),=(+--),=(-+-),=(--+),(R)+),Theextractingofmicroscopic23ThepotentialtermoftheMBOM:apotentialmatrixform,butnotascalarpotentialVV4X4(Rz)=V+0000000000ThepotentialtermoftheMBOM24InAs/GaSbSuperlatticeBandstructure:
(calculatedwiththeBOMandMBOM)InAs/GaSbSuperlatticeBandstr25OrientationDependenceofInterfaceInversionAsymmetryEffectonInGaAs/InPQuantumWellsOrientationDependenceofInte26Inversionasymmetryeffect:themicroscopiccrystalstructure:Dresselhauseffectthemacroscopicconfiningpotential:Rashbaeffecttheinversionasymmetrybetweentwointerfaces:NCAheterostructures--thezero-fieldspinsplitting--in-planeanisotropyInversionasymmetryeffect:the27The73-Å-wide(25monolayers)(001)InGaAs/InPQW:Aandtheplanesofatomsarestackedinthegrowthdirectionasfollows:M+1
CDCDCDA
BABAB
M
forthe(InGa)P-likeinterface;and
N+1
ABABABC
DCDCD
N
fortheInAs-likeinterface,whereA=(InGa),B=As,C=In,andD=P.TheMth(orNth)monolayerislocatedattheleft(orright)interface,whereN=M+25.The73-Å-wide(25monolayers)28WhereRzisthezcomponentoflatticesiter,i.e.,R=R//+RzŽ,andalsotheU(fortheconductionband)andtheV(forthevalenceband)denotethedifferenceofpotentialenergybetweentheheterobondspeciesandthehostmaterialattheinterfaces.00000000000000000000000000WhereRzisthezcomponentof29(001)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(001)InGaAs/InPQuantumWell30SpinSplittingoftheLowestConductionSubband:
((001)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC31Whenthein-planewavevectormovesaroundthecircle(=0
2),themixingelementsinEq.(4.2)shouldbestrictlywrittenasforthe(3,5)and(4,6)matrixelementsandforthe(5,3)and(6,4)matrixelements.Therefore,themixingstrengthdependsontheazimuthalangleMoreover,theandtermsequalto–1fororand1foror.Whenthein-planewavevector32The71-Å-wide(21monolayers)(111)InGaAs/InPQW:Thesameorderofatomicplanesasthe(001)QWAandThe71-Å-wide(21monolayers)33theheterobondsinthe[111]growthdirection:theheterobondsaretheremainingthreebondsother
thanthebondalongthe[111]direction:00000000000000000000000000000000000000000000000000000000000000theheterobondsinthe[111]g34(111)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(111)InGaAs/InPQuantumWell35SpinSplittingoftheLowestConductionSubband:
((111)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC36The73-Å-wide(35monolayers)(110)InGaAs/InPQW:=+++
=-++-
=-+
and
=-acrossperfect(110)interfaces,planesofatomsarearrangedintheorderof:
M+1
DCDCBABA
CDCDA
BAB
M
fortheleftinterfaceand
N
ABABCDCD
BABADCDC
N+1
fortherightinterface,whereN=M+35The73-Å-wide(35monolayers)37wheretheuppersignisusedfortheMthandNthmonolayer,andthelowersignisusedforthe(M+1)thand(N+1)thmonolayer.0000000000000000000000wheretheuppersignisusedf38(110)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(110)InGaAs/InPQuantumWell39SpinSplittingoftheLowestConductionSubband:((110)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC40SymmetrypointgroupofQWs.MicroscopicBOMBulkTdOhCAQW(001)D2dD4hNCAQW(001)C2vD4hNCAQW(111)C3vD3dNCAQW(110)C1horC1D2hSymmetrypointgroupofQWs.Mi41Dresselhaus-likeSpinSplittingDresselhaus-likeSpinSplittin42Dresselhauseffect:Thedegeneracybandsofthezinc-blendsbulkareliftedexceptforthewavevectoralongthe<001>and<111>directions,andthisistheso-calledDresselhauseffect.Dresselhauseffect:Thedeg43SubbandStructureof(110)InAs/GaSbSuperlattice:
(calculatedwiththeBOMandMBOM)SubbandStructureof(110)InA44MBOMBandstructureofInAs/GaSbSuperlattice
(grownonthe(001),(111),(113),and(115)-orientation)MBOMBandstructureofInAs/GaS45MicroscopicInterfaceEffecton(Anti)crossingBehaviorandSemiconductor-semimetalTransitioninInAs/GaSbSuperlatticesMicroscopicInterfaceEffecto46ThisMBOMmodelisbasedontheframeworkofthebondorbitalmodel(BOM)andcombinestheconceptoftheheuristicHbfmodeltoincludethemicroscopicinterfaceeffect.TheMBOMprovidesthedirectinsightintothemicroscopicsymmetryofthecrystalchemicalbondsinthevicinityoftheheterostructureinterfaces.Moreover,theMBOMcaneasilycalculatevariousgrowthdirectionsofheterostructurestoexploretheinfluenceofinterfaceperturbation.Inthischapter,byapplyingtheproposedMBOM,wewillcalculateanddiscussthe(anti)crossingbehaviorandthesemiconductortosemimetaltransitiononInAs/GaSbSLsgrownonthe(001)-,(111)-,and(110)-orientedsubstrates.TheeffectofinterfaceperturbationonInAs/GaSbwillbestudiedindetail.ThisMBOMmodelisbasedonth47(Anti)crossingBehaviorofInAs/GaSbSuperlattice(Anti)crossingBehaviorofInA48(001)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(001)SemimetalPhenomenon:
(c49(111)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(111)SemimetalPhenomenon:
(c50(110)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(110)SemimetalPhenomenon:
(c51k.pFiniteDifferenceMethodk.pFiniteDifferenceMethod52theBOMeigenfunctionsmustbeBlochfunctions,whichcanbeexpressedaswherethenotation
isusedforan-like(=s,x,y,z)bondorbitallocatedatafcclatticesiteR,kisthewavevector,andNisthetotalnumberoffcclatticepoints.
theBOMmatrixelementswiththebond-orbitalbasis(withoutspin-orbitcoupling)aregivenby(ink-space)WhereistherelativepositionvectorofthelatticesiteRtotheoriginand(seechapter2)istheinteractionparameter
takingtheTaylor-expansionontheBOMHamiltonianandomittingtermshigherthanthesecondorderink,thegeneralk‧pformalismiseasilyobtained,whosematrixelementscanbewrittenas[11]theBOMeigenfunctionsmustbe53thekinetictermoftheusualk˙pHamiltonian[inthebasis
)canbewrittenasCT0T00S0000000RRP+QBP-QP-Q-C-BP+Qwherethesuperscript*meansHermitianconjugate,
P=Ev
–[(2Exx+Ezz)/3]a2k2,
Q=–(Exx
–Ezz),a2(k2-)/12,
R=Ec
–Essa2k2
S=–Esxa
(kx+),
T=Esx/,
B=Exya2(–),
C=[(Exx
–Ezz)(–)/4–Exy],
and
Ec=Es+12Ess,Ev=Ep+8Exx+4Ezz.thekinetictermoftheusual54thetime-independentequationcanbeexpressedasafunctionofkz,thatis
]F=EFWiththereplacementofkzby,thisequationcanbeexpressedas=
and=theSchrödingerequationcanbewritteninthelayer-orbitalbasisaswhereistheinteractionbetweenandlayersF=EFThek.pfinitedifferencemethodthetime-independentequation55OptimumStepLengthintheKPFDMethodOptimumStepLengthintheKPF56the-dependenttermsofthek˙pHamiltoniancanbewrittenasandwhereisthespacingofmonolayersalongthegrowthdirectionthereplacementofbyandthentreatedbythefinite-differencecalculation,wehave
andwhereisthepseudo-layer,thesteplengthhisthespacingbetweentwoadjacentpseudo-layers,andFisthecorrespondingstatefunction.Thereasonoftheoptimumsteplength==the-dependenttermsofth57theSchrödingerequationsolvedbytheKPFDmethodcanbewrittenas
whereistheinteractionbetweenandlayers;theintergernis1forthe(001)and(111)samples,2forthe(110)and(113)samples,3forthe(112)and(115)samples,…,etc.Thatistosay,theon-siteand12nearest-neighborbondorbitalsbelongrespectivelyto(2n+1)layers,whichareeasilyclassifiedaccordingtothelongitudinalcomponentofthebond-orbitalpositionvector.Thesteplengthbetweentheon-sitelayerandthenearest-,second-,orthird-neighborinteractionlayeris1ML,2ML,or3MLspacinginthelongitudinaldirection,respectively.theSchrödingerequationsolv58Multi-stepLengthinthe(110)KPFDMethod:Multi-stepLengthinthe(110)59Multi-stepLengthinthe(112)KPFDMethod:Multi-stepLengthinthe(112)60Multi-stepLengthinthe(113)KPFDMethod:Multi-stepLengthinthe(113)61Multi-stepLengthinthe(115)KPFDMethod:Multi-stepLengthinthe(115)62InAsBulkBandstructure
(calculatedwiththek˙pandSBOmethod)InAsBulkBandstructure
(calcu63InAsBulkBandstructure
(calculatedwiththeSBOandKPSFDmethod)InAsBulkBandstructure
(calcu64AnisotropicOpticalMatrixElementsinQuantumWellswithVariousSubstrateOrientationsAnisotropicOpticalMatrixEle65The(11N)44LuttingerHamiltonianattheBrillouin-zonecenter(k1=k2=0)Hk.p(k1=k2=0)=(Ep+8Exx+4Ezz)-+++
whereaisthelatticeconstant,istheanglebetweenthezandX3axes,whichisequaltoThe(11N)44LuttingerHamilt66theopticaltransitionmatrixelementbetweentheconductionandthevalencebandscanbewrittenaswhereisthemomentumoperatorandêistheunitpolarizationvector.thein-planeopticalanisotropycanbecalculatedaswhereandarethesquaredmatrixelementsforthepolarizationparallelandperpendicularto,respectively.theopticaltransitionmatrix67AnisotropicOpticalMatrixElements(inthe(11N)-orientationAnisotropicOpticalMatrixEle68TheApplicationandCalculationofBondOrbitalModelonQuantumSemiconductor
鍵結軌道理論在量子半導體之應用與計算TheApplicationandCalculatio69IntroductionIntroduction70WhyisthechoosingtheBOM?ahybridorlinkbetweenthek.pandthetight-bindingmethodscombiningthevirtuesofthetwoaboveapproaches--thecomputationaleffortiscomparabletothek.p
method--avoidingthetediousfittingprocedurelikethe
tight-bindingmethod--itisadequateforultra-thinsuperlattice--theboundaryconditionbetweenmaterialsistreatedin
thestraight-forwardmanner--itsflexibilitytoaccommodateotherwiseawkward
geometriesWhyisthechoosingtheBOM?a71Theimprovementofthebondorbitalmodel(BOM):the(hkl)-orientedBOMHamiltoniantheBOMHamiltonianwiththesecond-neighborinteractiontheBOMintheantibondingorbitalframeworktheBOMwithmicroscopicinterfaceperturbation(MBOM)thek.pformalismfromtheBOMTheimprovementofthebondor72BondOrbitalModelBondOrbitalModel73Whatisthebondorbitalmodel?atight-binding-likeframeworkwiththes-andp-likebasisorbitaltheinteractionparametersdirectlyrelatedtotheLuttingerparametersWhatisthebondorbitalmodel74Zinc-blendeLatticeStructure:Zinc-blendeLatticeStructure:75TheBOMmatrixelements:where:TheinteractionparametersEsandEp:on-siteparameters
Ess,Esx,Exx,Exy,andEzz:thenearest-neighbor
interactionparametersTheBOMmatrixelements:where:76TheBOMmatrix:wherewithH(k)=TheBOMmatrix:wherewithH(k)=77TakingTaylor-expansionontheBOMmatrix:
(uptothesecondorder)whereandH(k)=---TakingTaylor-expansiononthe78RelationsbetweenBOMparametersandLuttingerparametersVBMCVBM/3RelationsbetweenBOMparamete79BulkBandstructure:
(001)-orientationBulkBandstructure:
(001)-orie80SuperlatticeBandstructure:
(001)-orientationSuperlatticeBandstructure:
(081Theorthogonaltransformationmatrix:wheretheanglesandarethepolarandazimuthalanglesofthenewgrowthaxisrelativetotheprimarycrystallographicaxes.
Theorthogonaltransformation82BulkInAsBandstructure:
(111),(110),(112),(113),and(115)-orientationBulkInAsBandstructure:
(111)83InAs/GaSbSuperlatticeBandstructure:
(111),(110),(112),(113),and(115)-orientationInAs/GaSbSuperlatticeBandstr84Thesecond-neighborbondorbital(SBO)model:WhereandH(k)=Thesecond-neighborbondorbit85BulkBandstructure:
WiththeSecondNearestNeighborInteraction:BulkBandstructure:
WiththeS86BulkBandstructureintheAntibondingOrbitalModel:BulkBandstructureintheAnti87BondOrbitalModelwithMicroscopicEffectsBondOrbitalModelwithMicros88Forthecommonatom(CA)heterostructureeg:(AlGa)As/GaAs,InAs/GaAsForthenocommonatom(NCA)heterostructureeg:InAs/GaSb,(InGa)/As/InP--InAs/GaSbwithIn-SbandGa-Asheterobondsattheinterfaces--(InGa)As/InPwith(InGa)-PandIn-AsheterobondsattheinterfacesForthecommonatom(CA)heter89The(001)InAs/GaSbsuperlattice:theplanesofatomsarestackedinthegrowthdirectionasfollows...GaSbGaSbInAsInAs....fortheoneinterface;and...InAsInAsGaSbGaSb....forthenextinterface.The(001)InAs/GaSbsuperlatti90Theextractingofmicroscopicinformation:thes-andp-likebondorbitalsexpandedintermsofthetetrahedral(anti)bondingorbitals
andinsteadofscalarpotentialbypotentialoperator~thisistheso-calledmodifiedbondorbitalmodel(MBOM)~=(+++),=(+--),=(-+-),=(--+),(R)+),Theextractingofmicroscopic91ThepotentialtermoftheMBOM:apotentialmatrixform,butnotascalarpotentialVV4X4(Rz)=V+0000000000ThepotentialtermoftheMBOM92InAs/GaSbSuperlatticeBandstructure:
(calculatedwiththeBOMandMBOM)InAs/GaSbSuperlatticeBandstr93OrientationDependenceofInterfaceInversionAsymmetryEffectonInGaAs/InPQuantumWellsOrientationDependenceofInte94Inversionasymmetryeffect:themicroscopiccrystalstructure:Dresselhauseffectthemacroscopicconfiningpotential:Rashbaeffecttheinversionasymmetrybetweentwointerfaces:NCAheterostructures--thezero-fieldspinsplitting--in-planeanisotropyInversionasymmetryeffect:the95The73-Å-wide(25monolayers)(001)InGaAs/InPQW:Aandtheplanesofatomsarestackedinthegrowthdirectionasfollows:M+1
CDCDCDA
BABAB
M
forthe(InGa)P-likeinterface;and
N+1
ABABABC
DCDCD
N
fortheInAs-likeinterface,whereA=(InGa),B=As,C=In,andD=P.TheMth(orNth)monolayerislocatedattheleft(orright)interface,whereN=M+25.The73-Å-wide(25monolayers)96WhereRzisthezcomponentoflatticesiter,i.e.,R=R//+RzŽ,andalsotheU(fortheconductionband)andtheV(forthevalenceband)denotethedifferenceofpotentialenergybetweentheheterobondspeciesandthehostmaterialattheinterfaces.00000000000000000000000000WhereRzisthezcomponentof97(001)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(001)InGaAs/InPQuantumWell98SpinSplittingoftheLowestConductionSubband:
((001)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC99Whenthein-planewavevectormovesaroundthecircle(=0
2),themixingelementsinEq.(4.2)shouldbestrictlywrittenasforthe(3,5)and(4,6)matrixelementsandforthe(5,3)and(6,4)matrixelements.Therefore,themixingstrengthdependsontheazimuthalangleMoreover,theandtermsequalto–1fororand1foror.Whenthein-planewavevector100The71-Å-wide(21monolayers)(111)InGaAs/InPQW:Thesameorderofatomicplanesasthe(001)QWAandThe71-Å-wide(21monolayers)101theheterobondsinthe[111]growthdirection:theheterobondsaretheremainingthreebondsother
thanthebondalongthe[111]direction:00000000000000000000000000000000000000000000000000000000000000theheterobondsinthe[111]g102(111)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(111)InGaAs/InPQuantumWell103SpinSplittingoftheLowestConductionSubband:
((111)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC104The73-Å-wide(35monolayers)(110)InGaAs/InPQW:=+++
=-++-
=-+
and
=-acrossperfect(110)interfaces,planesofatomsarearrangedintheorderof:
M+1
DCDCBABA
CDCDA
BAB
M
fortheleftinterfaceand
N
ABABCDCD
BABADCDC
N+1
fortherightinterface,whereN=M+35The73-Å-wide(35monolayers)105wheretheuppersignisusedfortheMthandNthmonolayer,andthelowersignisusedforthe(M+1)thand(N+1)thmonolayer.0000000000000000000000wheretheuppersignisusedf106(110)InGaAs/InPQuantumWellBandstructure:
(calculatedwiththeBOMandMBOM)(110)InGaAs/InPQuantumWell107SpinSplittingoftheLowestConductionSubband:((110)InGaAs/InPQuantumWell)SpinSplittingoftheLowestC108SymmetrypointgroupofQWs.MicroscopicBOMBulkTdOhCAQW(001)D2dD4hNCAQW(001)C2vD4hNCAQW(111)C3vD3dNCAQW(110)C1horC1D2hSymmetrypointgroupofQWs.Mi109Dresselhaus-likeSpinSplittingDresselhaus-likeSpinSplittin110Dresselhauseffect:Thedegeneracybandsofthezinc-blendsbulkareliftedexceptforthewavevectoralongthe<001>and<111>directions,andthisistheso-calledDresselhauseffect.Dresselhauseffect:Thedeg111SubbandStructureof(110)InAs/GaSbSuperlattice:
(calculatedwiththeBOMandMBOM)SubbandStructureof(110)InA112MBOMBandstructureofInAs/GaSbSuperlattice
(grownonthe(001),(111),(113),and(115)-orientation)MBOMBandstructureofInAs/GaS113MicroscopicInterfaceEffecton(Anti)crossingBehaviorandSemiconductor-semimetalTransitioninInAs/GaSbSuperlatticesMicroscopicInterfaceEffecto114ThisMBOMmodelisbasedontheframeworkofthebondorbitalmodel(BOM)andcombinestheconceptoftheheuristicHbfmodeltoincludethemicroscopicinterfaceeffect.TheMBOMprovidesthedirectinsightintothemicroscopicsymmetryofthecrystalchemicalbondsinthevicinityoftheheterostructureinterfaces.Moreover,theMBOMcaneasilycalculatevariousgrowthdirectionsofheterostructurestoexploretheinfluenceofinterfaceperturbation.Inthischapter,byapplyingtheproposedMBOM,wewillcalculateanddiscussthe(anti)crossingbehaviorandthesemiconductortosemimetaltransitiononInAs/GaSbSLsgrownonthe(001)-,(111)-,and(110)-orientedsubstrates.TheeffectofinterfaceperturbationonInAs/GaSbwillbestudiedindetail.ThisMBOMmodelisbasedonth115(Anti)crossingBehaviorofInAs/GaSbSuperlattice(Anti)crossingBehaviorofInA116(001)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(001)SemimetalPhenomenon:
(c117(111)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(111)SemimetalPhenomenon:
(c118(110)SemimetalPhenomenon:
(calculatedwiththeBOMandMBOM)(110)SemimetalPhenomenon:
(c119k.pFiniteDifferenceMethodk.pFiniteDifferenceMethod120theBOMeigenfunctionsmustbeBlochfunctions,whichcanbeexpressedaswherethenotation
isusedforan-like(=s,x,y,z)bondorbitallocatedatafcclatticesiteR,kisthewavevector,andNisthetotalnumberoffcclatticepoints.
theBOMmatrixelementswiththebond-orbitalbasis(withoutspin-orbitcoupling)aregivenby(ink-space)WhereistherelativepositionvectorofthelatticesiteRtotheoriginand(seechapter2)istheinteractionparameter
takingtheTaylor-expansionontheBOMHamiltonianandomittingtermshigherthanthesecondorderink,thegeneralk‧pformalismiseasilyobtained,whosematrixelementscanbewrittenas[11]theBOMeigenfunctionsmustbe121thekinetictermoftheusualk˙pHamiltonian[inthebasis
)canbewrittenasCT0T00S0000000RRP+QBP-QP-Q-C-BP+Qwherethesuperscript*meansHermitianconjugate,
P=Ev
–[(2Exx+Ezz)/3]a2k2,
Q=–(Exx
–Ezz),a2(k2-)/12,
R=Ec
–Essa2k2
S=–Esxa
(kx+),
T=Esx/,
B=Exya2(–),
C=[(Exx
–Ezz)(–)/4–Exy],
and
Ec=Es+12Ess,Ev=Ep+8Exx+4Ezz.thekinetictermoftheusual122thetime-independentequationcanbeexpressedasafunctionofkz,thatis
]F=EFWiththereplacementofkzby,thisequationcanbeexpressedas=
and=theSchrödingerequationc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省遵义市航天高级中学2025届高三(最后冲刺)英语试卷含答案
- 2025-2030国内酵素饮料行业市场发展现状及发展前景与投资机会研究报告
- 2025-2030双层床行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030冶金装备行业市场深度分析及发展策略研究报告
- 2025-2030全球与中国大型客车市场运行现状分析及竞争战略规划研究报告
- 2025-2030信托产业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030中国食用油和油脂行业市场发展趋势与前景展望战略研究报告
- 2025届广东省梅州市高三冲刺模拟英语试卷含解析
- 重庆市铜梁县第一中学2025届高考英语倒计时模拟卷含解析
- 广东省揭阳一中等重点中学2025届高考英语四模试卷含解析
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 新进(转岗)职工三级安全教育培训表
- GB/T 44347-2024乡村绿化技术规程
- (修订版)粮油质量检验员理论考试复习题库-下多选、判断题
- 保险行业客户画像分析与精准营销方案
- 沪教版小学六年级数学应用题150道及答案
- 北师大版四年级下册小数乘法竖式计算练习100题及答案
- 2024年湖南省长沙市中考地理试卷真题(含答案解析)
- 《中国健康成年人身体活动能量消耗参考值》(编制说明)
- 食堂大米采购招标文件
- CJT 216-2013 给水排水用软密封闸阀
评论
0/150
提交评论