2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第5课时两个直角三角形全等的判定教案新版沪科版_第1页
2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第5课时两个直角三角形全等的判定教案新版沪科版_第2页
2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第5课时两个直角三角形全等的判定教案新版沪科版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!14.2三角形全等的判定第5课时两个直角三角形全等的判定教学目标【知识与能力】学会判定直角三角形全等的特殊方法,发展合情推理能力。【过程与方法】经历探索直角三角形全等条件的过程,学会运用“HL”解决实际问题。【情感态度价值观】感受数学思想,激发学生的求知欲,使学生体会到逻辑推理的应用价值。教学重难点【教学重点】掌握判定直角三角形全等的特殊方法。【教学难点】应用“HL”解决直角三角形全等的问题。课前准备课件、教具等。教学过程一、情境导入路旁一棵被大风刮歪的小白杨,为了扶正它,需两边各固定一条长短一样的拉线或支柱.现工人师傅把一根已固定好(右侧一根AC),之后小聪很快找到了另一根(左侧一根)在地面上的位置:只要BD=CD,B点即是.小聪找到的位置是对的吗?二、合作探究探究点一:利用“HL”判定直角三角形全等例1如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③解析:推出∠ADC=∠BDE=90°,根据“AAS”推出两三角形全等,即可判断A、B;根据“HL”即可判断C;根据“AAA”不能判断两三角形全等.选项A中,∵CD⊥AB,∴∠ADC=∠BDE=90°.在△ADC和△EDB中,eq\b\lc\{(\a\vs4\al\co1(∠C=∠B,,∠ADC=∠EDB,AD=DE,)),∴△ADC≌△EDB(AAS);选项B中,∵CD⊥AB,∴∠ADC=∠BDE=90°.在△ADC和△EDB中,eq\b\lc\{(\a\vs4\al\co1(∠A=∠BED,,∠ADC=∠BDE,AC=BE,)),∴△ADC≌△EDB(AAS);选项C中,∵CD⊥AB,∴∠ADC=∠BDE=90°.在Rt△ADC和Rt△EDB中,eq\b\lc\{(\a\vs4\al\co1(AC=BE,,AD=ED,))∴Rt△ADC≌Rt△EDB(HL);选项D中,根据三个角对应相等,不能判断两三角形全等;故选D.方法总结:本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有“SAS”,“ASA”,“AAS”,“SSS”,在直角三角形中,还有“HL”定理,如果具备条件“SSA”和“AAA”都不能判断两三角形全等.例2下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个解析:根据HL可得①正确;由“AAS”或“ASA”可得②、③正确;三个角相等的两个直角三角形不一定全等,故④错误.故选C.方法总结:本题考查了直角三角形全等的判定,除了HL外,还有一般三角形全等的四个判定定理,要找准对应关系.探究点二:直角三角形全等的判定(“HL”)与性质的综合运用例3如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,AD=2,BC=4,且AE=BC,DE=CE.(1)Rt△ADE与Rt△BEC全等吗?请说明理由;(2)求AB的长度;(3)△CDE是不是等腰直角三角形?请说明理由.解析:(1)根据证明直角三角形全等的“HL”定理证明即可;(2)由(1)可得,AD=BE,AE=BC,所以,AB=AE+BE=BC+AD;(3)根据题意,∠AED+∠ADE=90°,∠BEC+∠BCE=90°,又∠AED=∠BCE,∠ADE=∠BEC,所以,∠AED+∠BEC=90°,即可证得∠DEC=90°,即可得出.解:(1)Rt△ADE≌Rt△BEC,理由如下:∵在Rt△ADE和Rt△BEC中,eq\b\lc\{(\a\vs4\al\co1(DE=CE,,AE=BC,))∴Rt△ADE≌Rt△BEC(HL);(2)∵Rt△ADE≌Rt△BEC,∴AD=BE,又∵AE=BC,∴AB=AE+BE=BC+AD,即AB=AD+BC=2+4=6;(3)△CDE是等腰直角三角形,理由如下:∵Rt△ADE≌Rt△BEC,∴∠AED=∠BCE,∠ADE=∠BEC.又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,∴2(∠AED+∠BEC)=180°,∴∠AED+∠BEC=90°,∴∠DEC=90°.又∵DE=CE,∴△CDE是等腰直角三角形.方法总结:本题主要考查了全等三角形的判定与性质和直角三角形的判定,证明三角形全等时,关键是根据题意选取适当的条件.例4如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?解析:本题要分情况讨论:(1)Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.(2)Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.解:根据三角形全等的判定方法“HL”可知:(1)当P运动到AP=BC时,∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵eq\b\lc\{(\a\vs4\al\co1(AP=BC,,PQ=AB,))∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△PQA中,∵eq\b\lc\{(\a\vs4\al\co1(AP=AC,,PQ=AB,))∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、板书设计eq\a\vs4\al(两个直角,三角形全,等的判定)eq\b\lc\{(\a\vs4\al\co1(直角三角形全等的“HL”判定:斜边和一条,直角边分别相等的两个直角三角形全等.,直角三角形全等的判定方法:“SAS”,,“ASA”,“SSS”,“AAS”,“HL”.))教学反思由于直角三角形是特殊的三角形,要求理解已经学过的判定全等三角形的四种方法均可以用来判定两个直角三角形全等,同时通过探索

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论