


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④3.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.4.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1475.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.6.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A. B.C. D.7.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.8.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,9.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.10.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.11.已知函数,,若成立,则的最小值是()A. B. C. D.12.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则______.14.函数过定点________.15.已知,,则与的夹角为.16.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是边长为的菱形,,点分别是的中点.(1)求证:平面;(2)若,求直线与平面所成角的正弦值.18.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)19.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.20.(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,21.(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.22.(10分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【题目详解】解析:,,对应点为,在第三象限.故选:C.【答案点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.2、A【答案解析】
由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【题目详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【答案点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.3、A【答案解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.4、B【答案解析】
结合随机模拟概念和几何概型公式计算即可【题目详解】如图,由几何概型公式可知:.故选:B【答案点睛】本题考查随机模拟的概念和几何概型,属于基础题5、C【答案解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.6、A【答案解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.【题目详解】根据题意,,所以点的坐标为,又,所以.故选:A.【答案点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.7、B【答案解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【题目详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【答案点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.8、A【答案解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【题目详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.【答案点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.9、B【答案解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【题目详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【答案点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.10、D【答案解析】
由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【题目详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【答案点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.11、A【答案解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.12、C【答案解析】
作出韦恩图,数形结合,即可得出结论.【题目详解】如图所示,,同时.故选:C.【答案点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】
根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【题目详解】向量,则,则因为即,化简可得解得故答案为:【答案点睛】本题考查了向量坐标加法和减法的运算,向量模长的求法,属于基础题.14、【答案解析】
令,,与参数无关,即可得到定点.【题目详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【答案点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.15、【答案解析】
根据已知条件,去括号得:,16、【答案解析】
将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【题目详解】因为即又等比数列各项均为正数,故故答案为:【答案点睛】本题考查在等比数列中由前n项和关系求公比,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】
(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【题目详解】(1)证明:取的中点,连接.是的中点,,又,四边形是平行四边形.,又平面平面,平面.(2),,同理可得:,又平面.连接,设,则,建立空间直角坐标系.设平面的法向量为,则,则,取.直线与平面所成角的正弦值为.【答案点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.18、(1)0.4;(2);(3)应选择方案,理由见解析【答案解析】
(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【题目详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为,∵,∴估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分布列为1601802002202402602800.050.050.20.30.20.150.05;同理,随机变量的分布列为1501802302803300.30.30.20.150.05.∵,∴建议骑手应选择方案.【答案点睛】本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.19、(1)存在;详见解析(2)【答案解析】
(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【题目详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【答案点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.20、(1)(2)详见解析【答案解析】
由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相应的概率,列出分布列求期望.【题目详解】由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国耳麦市场供需现状及投资战略研究报告
- 2025年中国刨刀器行业市场发展前景及发展趋势与投资战略研究报告
- “共享营养科学饮食”营养师服务共享商业计划书
- 旅游客运需求预测的深度学习方法-洞察及研究
- 中国打底裤行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 医院患者自杀应急整改措施
- 二零二五年度二手车4S店专业评估与销售服务合同
- 物流供应链突发风险处理措施与控制他
- 高一英语学业目标达成计划
- 2025版4S店洗车服务品牌授权承包合同
- 2025-2030中国交流伺服控制器行业应用动态及投资前景分析报告
- 纱线质量检测仪器与设备考核试卷
- 2025至2030中国柴油内燃机行业发展趋势分析与未来投资战略咨询研究报告
- 安全生产天数管理制度
- 广东省广州市南沙区2025年八年级下学期期末数学试题及参考答案
- 2025年广西公需科目答案03
- 2025年中级会计实务考试真题试题及答案
- 2025届成都青羊区四校联考数学八下期末考试试题含解析
- 复式公寓分割协议书
- 海上风电运维船安全
- 生产经营单位事故隐患内部报告奖励机制实践与案例
评论
0/150
提交评论