2022年江苏省无锡市梁溪区九年级数学上册期末调研试题含解析_第1页
2022年江苏省无锡市梁溪区九年级数学上册期末调研试题含解析_第2页
2022年江苏省无锡市梁溪区九年级数学上册期末调研试题含解析_第3页
2022年江苏省无锡市梁溪区九年级数学上册期末调研试题含解析_第4页
2022年江苏省无锡市梁溪区九年级数学上册期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.2.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似()A.①② B.② C.①③ D.①②③3.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位4.下列说法正确的是()A.等弧所对的圆心角相等 B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆 D.相等的圆心角所对的弧相等5.等腰三角形底边长为10,周长为36,则底角的余弦值等于()A. B. C. D.6.如图,中,且,若点在反比例函数的图象上,点在反比例函数的图象上,则的值为()A. B. C. D.7.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°8.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标为()A. B. C. D.9.对于题目“如图,在中,是边上一动点,于点,点在点的右侧,且,连接,从点出发,沿方向运动,当到达点时,停止运动,在整个运动过程中,求阴影部分面积的大小变化的情况"甲的结果是先增大后减小,乙的结果是先减小后增大,其中()A.甲的结果正确 B.乙的结果正确C.甲、乙的结果都不正确,应是一直增大 D.甲、乙的结果都不正确,应是一直减小10.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.11.已知x=﹣2是一元二次方程x2+mx+4=0的一个解,则m的值是()A.﹣4 B.4 C.0 D.0或412.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③二、填空题(每题4分,共24分)13.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到14.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)15.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.16.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____.17.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.18.某商品原售价300元,经过连续两次降价后售价为260元,设平均每次降价的百分率为x,则满足x的方程是______.三、解答题(共78分)19.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20.(8分)等腰中,,作的外接圆⊙O.(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.①设,若,请用含与的式子表示;②当时,若,求的长;(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.21.(8分)如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D.(1)求证:;(2)连接OB,OC,若⊙O的半径为5,BC=8,求的面积.22.(10分)已知反比例函数y=(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线Cl,将Cl向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.23.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.24.(10分)利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?25.(12分)(1)(x-5)2-9=0(2)x2+4x-2=026.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E(1)求证:DE是⊙O的切线.(2)求DE的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.2、C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A,∠AED=∠B,

∴△AED∽△ABC,故①正确,

∵∠A=∠A,,

∴△AED∽△ABC,故③正确,

由②无法判定△ADE与△ACB相似,

故选C.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.3、C【解析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.4、A【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.【详解】等弧所对的圆心角相等,A正确;平分弦的直径垂直于这条弦(此弦不能是直径),B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,故选A.【点睛】此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系5、A【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案.【详解】解:如图,BC=10cm,AB=AC,可得AC=(36-10)÷2=26÷2=13(cm).又AD是底边BC上的高,∴CD=BD=5cm,

∴cosC=,即底角的余弦值为,故选:A.【点睛】本题主要考查等腰三角形的性质和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键.6、D【分析】要求函数的解析式只要求出点B的坐标就可以,设点A的坐标是,过点A、B作AC⊥y轴、BD⊥y轴,分别于C、D.根据条件得到△ACO∽△ODB,利用相似三角形对应边成比例即可求得点B的坐标,问题即可得解.【详解】如图,过点A,B作AC⊥y轴,BD⊥y轴,垂足分别为C,D,设点A的坐标是,

则,

∵点A在函数的图象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵点B在反比例函数的图象上,

∴.故选:D【点睛】本题是反比例函数与几何的综合,考查了求函数的解析式的问题以及相似三角形的判定和性质,能够把求反比例函数的解析式转化为求点的坐标的问题是解题的关键.7、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.8、D【分析】根据关于原点的对称点,横、纵坐标都互为相反数”解答即可得答案.【详解】∵关于原点的对称点,横、纵坐标都互为相反数,∴点(2,-1)关于原点对称的点的坐标为(-2,1),故选:D.【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟记关于原点的对称点,横、纵坐标都互为相反数是解题关键.9、B【分析】设PD=x,AB边上的高为h,求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:在中,∵,∴,设,边上的高为,则.∵,∴,∴,∴,∴,∴当时,的值随的增大而减小,当时,的值随的增大而增大,∴乙的结果正确.故选B.【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.10、B【详解】解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.11、B【分析】直接把x=﹣2代入已知方程就得到关于m的方程,再解此方程即可.【详解】∵x=﹣2是一元二次方程x2+mx+4=0的一个解,

∴4−2m+4=0,

∴m=4.

故选B.【点睛】本题考查一元二次方程的解,解题的关键是将x=﹣2代入已知方程.12、B【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【点睛】本题考查了利用频率估计概率,明确概率的定义是解题的关键.二、填空题(每题4分,共24分)13、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.14、③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【点睛】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.15、111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【详解】解:∵直线l1∥l2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.16、【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.17、1【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.18、.【分析】根据降价后的售价=降价前的售价×(1-平均每次降价的百分率),可得降价一次后的售价是,降价一次后的售价是,再根据经过连续两次降价后售价为260元即得方程.【详解】解:由题意可列方程为故答案为:.【点睛】本题考查一元二次方程的实际应用,增长率问题,解题的关键是读懂题意,找到等量关系,正确列出方程,要注意增长的基础.三、解答题(共78分)19、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用20、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.【分析】(1)①连接BO、CO,利用SSS可证明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性质及三角形内角和定理可用y表示出∠ABC,由圆周角定理可得∠DCB=∠DAB=x,根据即可得答案;②过点作于点,根据垂径定理可得AF的长,利用勾股定理可求出OF的长,由(1)可得,由AB⊥CD可得n=90°,即可证明y=x,根据AB⊥CD,OF⊥AC可证明△AED∽△AFO,设DE=a,根据相似三角形的性质可,由∠D=∠B,∠AED=∠CEB=90°可证明△AED∽△CEB,设,根据相似三角形的性质可得,根据线段的和差关系和勾股定理列方程组可求出a、b的值,根据△AED∽△AFO即可求出AD的值;(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,根据BC=AB可得三角形ABC是等边三角形,根据圆周角定理可得∠APM=60°,即可证明△APM是等边三角形,利用角的和差关系可得∠BAP=∠CAM,利用SAS可证明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,设,则,利用∠APB和∠BPE的正弦可用x表示出BD、BE的长,根据可得S与x的关系式,根据二次函数的性质即可求出S取最大值时x的值,利用∠BPA的余弦及勾股定理可求出AB的长,根据等边三角形的性质及垂径定理求出OA的长即可得答案.【详解】(1)①连接BO,CO,∵,且为公共边,∴,∴,∴,∴∵,∵,∴∴.②过点作于点,∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,设,则∵,∴△AED∽△CEB,∴,即设,则,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等边三角形,∴,∴,∴是等边三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴设,则,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴当时,即PB=5时,S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等边三角形,O为△ABC的外接圆圆心,∴∠OAF=30°,AF=AB=,∴OA==.∴此时的半径是.【点睛】本题考查圆周角定理、相似三角形的判定与性质、垂径定理、等边三角形的判定与性质、求二次函数的最值及解直角三角形,综合性比较强,熟练掌握相关的性质及定理是解题关键.21、(1)见解析;(2)12【分析】(1)由点E是的中点根据圆周角定理可得∠BAE=∠CBE,又由∠E=∠E(公共角),即可证得△BDE∽△ABE,然后由相似三角形的对应边成比例,证得结论.(2)过点O作OF⊥BC于点F,根据垂径定理得出BF=CF=4,再根据勾股定理得出OF的长,从而求出的面积【详解】(1)证明:∵点E是弧BC的中点∴∠BAE=∠CBE=∠DBE又∵∠E=∠E∴△AEB∽△BED∴∴(2)过点O作OF⊥BC于点F,则BF=CF=4在中,∴【点睛】此题考查了圆周角定理、垂径定理以及相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22、(2)k=-2;(2)作图见解析;2.【分析】(2)把这两个函数解析式联立,化简可得kx2+4x-4=0,又因y=的图像与直线y=kx+4只有一个公共点,可得△=0,即可求得k值;(2)C2平移至C2处所扫过的面积等于平行四边形C2C2AB的面积,直接求得即可.【详解】Jie:(2)联立得kx2+4x-4=0,又∵y=的图像与直线y=kx+4只有一个公共点,∴42-4∙k∙(—4)=0,∴k=-2.(2)如图:C2平移至C2处所扫过的面积为2.【点睛】本题考查反比例函数与一次函数的交点问题;平移的性质.23、(1);(1).【解析】(1)根据题意列函数关系式即可;

(1)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论