



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在中,点,分别为,的中点,若,,且满足,则等于()A.2 B. C. D.2.已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为A. B. C. D.3.若,则的虚部是()A. B. C. D.4.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降5.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为()A. B.C. D.6.已知,则()A.5 B. C.13 D.7.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.18.二项式的展开式中,常数项为()A. B.80 C. D.1609.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.10.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.211.已知函数的图象如图所示,则可以为()A. B. C. D.12.函数的定义域为,集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.14.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.15.的展开式中所有项的系数和为______,常数项为______.16.设、满足约束条件,若的最小值是,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若函数在上存在两个极值点,,且,证明.18.(12分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.19.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.20.(12分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.21.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.22.(10分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
选取为基底,其他向量都用基底表示后进行运算.【题目详解】由题意是的重心,,∴,,∴,故选:D.【答案点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.2、D【答案解析】
如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,,,.在和中,由余弦定理得,整理解得.故选D.3、D【答案解析】
通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【题目详解】由题可知,所以的虚部是1.故选:D.【答案点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.4、D【答案解析】
根据统计图中数据的含义进行判断即可.【题目详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【答案点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.5、A【答案解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【题目详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【答案点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.6、C【答案解析】
先化简复数,再求,最后求即可.【题目详解】解:,,故选:C【答案点睛】考查复数的运算,是基础题.7、A【答案解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【题目详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【答案点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.8、A【答案解析】
求出二项式的展开式的通式,再令的次数为零,可得结果.【题目详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【答案点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.9、C【答案解析】
作,;,由题意,由二倍角公式即得解.【题目详解】由题意,,准线:,作,;,设,故,,.故选:C【答案点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10、B【答案解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【题目详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【答案点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.11、A【答案解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【题目详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【答案点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.12、A【答案解析】
根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【题目详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【答案点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四边形是矩形.而.从而.故答案为:.【答案点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.14、【答案解析】
可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【题目详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【答案点睛】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.15、3-260【答案解析】
(1)令求得所有项的系数和;(2)先求出展开式中的常数项与含的系数,再求展开式中的常数项.【题目详解】将代入,得所有项的系数和为3.因为的展开式中含的项为,的展开式中含常数项,所以的展开式中的常数项为.故答案为:3;-260【答案点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题.16、【答案解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【题目详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)若,则在定义域内递增;若,则在上单调递增,在上单调递减(2)证明见解析【答案解析】
(1),分,讨论即可;(2)由题可得到,故只需证,,即,采用换元法,转化为函数的最值问题来处理.【题目详解】由已知,,若,则在定义域内递增;若,则在上单调递增,在上单调递减.(2)由题意,对求导可得从而,是的两个变号零点,因此下证:,即证令,即证:,对求导可得,,,因为故,所以在上单调递减,而,从而所以在单调递增,所以,即于是【答案点睛】本题考查利用导数研究函数的单调性以及证明不等式,考查学生逻辑推理能力、转化与化归能力,是一道有一定难度的压轴题.18、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【答案解析】
(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【题目详解】(1)当时,,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是..①当时,,所以当时,;当时,,所以在上单调递增,在上单调递减;②当时,,所以当和时,;当时,,所以在和上单调递增,在上单调递减;③当时,,所以在上恒成立.所以在上单调递增;④当时,,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【答案点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.19、(1)函数的单调递增区间为和,单调递减区间为;(2).【答案解析】
(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【题目详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区间为(2)(Ⅰ)当时,所以在上无零点;(Ⅱ)当时,,①若,即,则是的一个零点;②若,即,则不是的零点(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以①当时,在上单调递增。又,所以(ⅰ)当时,在上无零点;(ⅱ)当时,,又,所以此时在上恰有一个零点;②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,,所以此时在上恰有一个零点,综上,【答案点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想20、(1),;(2),,.【答案解析】
(1)把曲线的参数方程与曲线的极坐标方程分别转化为直角坐标方程;(2)利用图象求出三个点的极径与极角.【题目详解】解:(1)由消去参数得,即曲线的普通方程为,又由得即为,即曲线的平面直角坐标方程为(2)∵圆心到曲线:的距离,如图所示,所以直线与圆的切点以及直线与圆的两个交点,即为所求.∵,则,直线的倾斜角为,即点的极角为,所以点的极角为,点的极角为,所以三个点的极坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权代理补充协议
- 新疆计算机二级vb 试题及答案
- 水产养殖区土壤修复与水环境监测合作协议
- 空压机设备维护及包销服务综合合同
- 新出消防考试题及答案
- 数字孪生在海洋工程建设项目施工进度管理与应用合同
- 珠宝首饰定制设计及产业链整合合同
- 影视服装租赁、消毒防疫及艺人形象提升服务合同
- 海外移民房产购置一站式咨询服务协议
- 继承房产共有权分割与物业管理服务合同
- 2024年中南大学专职辅导员招聘笔试真题
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解
- 2025-2030自愿碳信用交易行业市场现状供需分析及投资评估规划分析研究报告
- 室内空间设计方案汇报
- 人因工程学在潜艇指挥系统设计中的应用研究
- 2025年中国办公椅数据监测研究报告
- 调饮技术大赛考试题库400题(含答案)
- GB/T 45385-2025燃气燃烧器和燃烧器具用安全和控制装置特殊要求排气阀
- 自动驾驶车辆的远程监控与维护系统-全面剖析
- 排他协议合同协议
- 餐厅股权协议书范本
评论
0/150
提交评论