




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
04十一月2022六西格玛黑带培训教材01十一月2022六西格玛黑带培训教材1ScopeofModuleProcessVariationProcessCapabilitySpecification,ProcessandControlLimitsProcessPotentialvsProcessPerformanceShort-TermvsLong-TermProcessCapabilityProcessCapabilityforNon-NormalDataCycle-Time (ExponentialDistribution)RejectRate (BinomialDistribution)DefectRate (PoissonDistribution)ScopeofModuleProcessVariati2ProcessVariationProcessVariationistheinevitabledifferencesamongindividualmeasurementsorunitsproducedbyaprocess.SourcesofVariationwithinunit (positionalvariation)betweenunits (unit-unitvariation)betweenlots (lot-lotvariation)betweenlines (line-linevariation)acrosstime (time-timevariation)measurementerror (repeatability&reproducibility)ProcessVariationProcessVaria3TypesofVariationInherentorNaturalVariationDuetothecumulativeeffectofmanysmallunavoidablecausesAprocessoperatingwithonlychancecausesofvariationpresentissaidtobe“instatisticalcontrol”TypesofVariationInherentor4TypesofVariationSpecialorAssignableVariationMaybedueto a)improperlyadjustedmachine b)operatorerror c)defectiverawmaterialAprocessoperatinginthepresenceofassignablecausesofvariationissaidtobe“out-of-control”TypesofVariationSpecialorA5ProcessCapabilityProcessCapabilityistheinherentreproducibilityofaprocess’soutput.Itmeasureshowwelltheprocessiscurrentlybehavingwithrespecttotheoutputspecifications.Itreferstotheuniformityoftheprocess.Capabilityisoftenthoughtofintermsoftheproportionofoutputthatwillbewithinproductspecificationtolerances.Thefrequencyofdefectivesproducedmaybemeasuredina) percentage(%)b) partspermillion(ppm)c) partsperbillion(ppb)ProcessCapabilityProcessCapa6ProcessCapabilityProcessCapabilitystudiescan
indicatetheconsistencyoftheprocessoutputindicatethedegreetowhichtheoutputmeetsspecificationsbeusedforcomparisonwithanotherprocessorcompetitorProcessCapabilityProcessCapa7ProcessCapabilityvsSpecificationLimitsa)b)c)a)Processishighlycapableb)Processismarginallycapablec)ProcessisnotcapableProcessCapabilityvsSpecific8ThreeTypesofLimitsSpecificationLimits(LSLandUSL)createdbydesignengineeringinresponsetocustomerrequirementstospecifythetoleranceforaproduct’scharacteristicProcessLimits(LPLandUPL)measuresthevariationofaprocessthenatural6limitsofthemeasuredcharacteristicControlLimits(LCLandUCL)measuresthevariationofasamplestatistic(mean,variance,proportion,etc)ThreeTypesofLimitsSpecifica9ThreeTypesofLimitsDistributionofIndividualValuesDistributionofSampleAveragesThreeTypesofLimits10ProcessCapabilityIndicesTwomeasuresofprocesscapabilityProcessPotentialCp
ProcessPerformanceCpu
Cpl
Cpk
ProcessCapabilityIndicesTwo11ProcessPotentialTheCpindexassesseswhetherthenaturaltolerance(6)ofaprocessiswithinthespecificationlimits.ProcessPotentialTheCpindex12ProcessPotentialACpof1.0indicatesthataprocessisjudgedtobe“capable”,i.e.iftheprocessiscenteredwithinitsengineeringtolerance,0.27%ofpartsproducedwillbebeyondspecificationlimits. Cp RejectRate 1.00 0.270% 1.33 0.007% 1.50 6.8ppm 2.00 2.0ppbProcessPotentialACpof1.0i13ProcessPotentiala)b)c)a)Processishighlycapable(Cp>2)b)Processiscapable(Cp=1to2)c)Processisnotcapable(Cp<1)ProcessPotentiala)b)c)14ProcessPotentialTheCpindexcomparestheallowablespread(USL-LSL)againsttheprocessspread(6).Itfailstotakeintoaccountiftheprocessisnotcenteredbetweenthespecificationlimits.ProcessiscenteredProcessisnotcenteredProcessPotentialTheCpindex15ProcessPerformanceTheCpkindexrelatesthescaleddistancebetweentheprocessmeanandthenearestspecificationlimit.ProcessPerformanceTheCpkind16ProcessPerformance Cpk RejectRate 1.0 0.13–0.27% 1.1 0.05–0.10% 1.2 0.02–0.03% 1.3 48.1–96.2ppm 1.4 13.4–26.7ppm 1.5 3.4–6.8ppm 1.6 794–1589ppb 1.7 170–340ppb 1.8 33–67ppb 1.9 6–12ppb 2.0 1–2ppbProcessPerformance Cpk Reje17ProcessPerformancea)Processishighlycapable(Cpk>1.5)b)Processiscapable(Cpk=1to1.5)c)Processisnotcapable(Cpk<1)a)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1ProcessPerformancea)Cp=2b)C18Example1SpecificationLimits : 4to16gMachine Mean StdDev (a) 10 4 (b) 10 2 (c) 7 2 (d) 13 1DeterminethecorrespondingCpandCpkforeachmachine.Example1SpecificationLimits 19Example1AExample1A20Example1BExample1B21Example1CExample1C22Example1DExample1D23ProcessCapabilityForanormallydistributedcharacteristic,thedefectiverateF(x)maybeestimatedviathefollowing:Forcharacteristicswithonlyonespecificationlimit:a) LSLonlyb) USLonlyLSLUSLProcessCapabilityForanormal24Example2SpecificationLimits : 4to16gMachine Mean StdDev (a) 10 4 (b) 10 2 (c) 7 2 (d) 13 1Determinethedefectiverateforeachmachine.Example2SpecificationLimits 25Example2MeanStdDevZLSLZUSLF(x<LSL)F(x>USL)F(x) 10 4 -1.5 1.5 66,807 66,807 133,614 10 2 -3.0 3.0 1,350 1,350 2,700 7 2 -1.5 4.5 66,8073 66,811 13 1 -9.0 3.0 0 1,350 1,350 LowerSpecLimit =4gUpperSpecLimit =16gExample2MeanStdDevZL26ProcessPotentialvsProcessPerformance(a)PoorProcessPotential (b)PoorProcessPerformanceLSLUSLLSLUSLExperimentalDesigntoreducevariationExperimentalDesigntocentermeantoreducevariationProcessPotentialvsProcessP27ProcessPotentialvsProcessPerformance ProcessPotentialIndex(Cp)Cpk
1.0 1.2 1.4 1.6 1.8 2.0
1.0
2,699.9 1,363.3 1,350.0 1,350.0 1,350.0 1,350.0
1.2
318.3 159.9 159.1 159.1 159.1
1.4
26.7 13.4 13.4 13.4
1.6
1.6 0.8 0.8
1.8
0.1 0.0
2.0
0.0
DefectiveRate(measuredindppm)isdependentontheactualcombinationofCpandCpk..ProcessPotentialvsProcessP28ProcessPotentialvsProcessPerformancea)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1Cp–Cpk
MissedOpportunityProcessPotentialvsProcessP29AlternativeProcessPerformanceIndexProcesscapabilitystatisticsmeasureprocessvariationrelativetospecificationlimits.TheCpstatisticcomparestheengineeringtoleranceagainsttheprocess’snaturalvariation.TheCpkstatistictakesintoaccountthelocationoftheprocessrelativetothemidpointbetweenspecifications.Iftheprocesstargetisnotcenteredbetweenspecifications,theCpmstatisticispreferred.AlternativeProcessPerformanc30ProcessStabilityAprocessisstableifthedistributionofmeasurementsmadeonthegivenfeatureisconsistentovertime.TimeStableProcessTimeUnstableProcessucllclucllclProcessStabilityAprocessis31WithinvsOverallCapabilityWithinCapability(previouslycalledshort-termcapability)showstheinherentvariabilityofamachine/processoperatingwithinabriefperiodoftime.OverallCapability(previouslycalledlong-termcapability)showsthevariabilityofamachine/processoperatingoveraperiodoftime.Itincludessourcesofvariationinadditiontotheshort-termvariability.WithinvsOverallCapabilityWi32WithinvsOverallCapability Within OverallSampleSize 30–50units 100unitsNumberofLots singlelot severallotsPeriodofTime hoursordays weeksormonthsNumberofOperators singleoperator differentoperatorsProcessPotential Cp Pp
ProcessPerformance Cpk Ppk
WithinvsOverallCapability 33WithinvsOverallCapability WithinCapability OverallCapability ThekeydifferencebetweenthetwosetsofindicesliesintheestimatesforWithinandOverall.WithinvsOverallCapability W34EstimatingWithinandOverall
ConsiderthefollowingobservationsfromaControlChart:
S/N X1 X2 …Xk Mean Range StdDev 1 x1,1 x2,1 …xk,1 X1 R1 S1 2 x1,2 x2,2 …xk,2 X2 R2 S2 : : : : : : : m x1,m x2,m …xk,m Xm Rm SmTheoverallvariationOverall
isestimatedby–––EstimatingWithinandOveral35EstimatingWithinandOverall
ThewithinvariationWithin
maybeestimatedbyoneofthefollowing:(a) R-barMethod where d2isaShewhartconstant=(k)(b) S-barMethod where c4isaShewhartconstant=(k)(c) PooledStandardDeviationMethodInMiniTab,thePooledStandardDeviationisthedefaultmethod.EstimatingWithinandOveral36EstimatingWithinandOverall
Incaseswherethereisonly1observationpersub-group(i.e.k=1),theMovingRangeMethodisused,where .ThewithinvariationWithin
isthenestimatedusingeithera) theAverageMovingRange:b) theMedianMovingRange:EstimatingWithinandOveral37Example3Thelengthofacamshaftforanautomobileengineisspecifiedat600±2mm.Controlofthelengthofthecamshaftiscriticaltoavoidscrap/rework.Thecamshaftisprovidedbyanexternalsupplier.Assesstheprocesscapabilityforthissupplier.ThedataisavailableinProcessCapabilityAnalysis.MTW.Example3Thelengthofacamsh38Example3StatQualityToolsCapabilityAnalysis(Normal)Example3StatQualityTools39Example3Example340Example3AHistogramofcamshaftlengthsuggestsmixedpopulations.Furtherinvestigationrevealedthattherearetwosuppliersforthecamshaft.Datawascollectedovercamshaftsfrombothsources.Arethetwosupplierssimilarinperformance?Ifnot,whatareyourrecommendations?Example3AHistogramofcamshaf41Example3AStatQualityToolsCapabilitySixpack(Normal)Example3AStatQualityTools42Example3AExample3A43Example3AExample3A44What’sSixSigmaQuality—ThenOriginalDefinitionbyMotorola:ifthespecificationlimitsareatleast±6awayfromtheprocessmean,i.e.Cp2,andtheprocessshiftsbylessthan1.5,i.e.Cpk1.5,thentheprocesswillyieldlessthan3.4dppmrejects.66Shift1.54.5What’sSixSigmaQuality—T45What’sSixSigmaQuality—NowMikelJHarryclaimsthattheprocessmeanbetweenlotswillvary,withanaverageprocessshiftof1.5.k=z+1.5k=z+1.5Shift1.5zNote: SigmaCapability=ƒ(dpmo)ƒ(dppm)What’sSixSigmaQuality—N46ProcessCapabilityforNon-NormalDataNoteverymeasuredcharacteristicisnormallydistributed. Characteristic Distribution CycleTime Exponential RejectRate Binomial DefectRate Poisson ProcessCapabilityforNon-Nor47ProcessCapabilityforCycleTimeTheWeibullDistributionisageneralfamilyofdistributionwithwhere scaleparameter
isthevalueatwhichCDF=68.17%,and shapeparameterdeterminestheshapeofthePDF.ProcessCapabilityforCycleT48ProcessCapabilityforCycleTimeAt=1, theWeibullDistributionisreducedto ForanExponentialDistribution,TheExponentialDistributionisthusaWeibullDistributionwith=1.Weibull(x;=1,)Exponential(x;)ProcessCapabilityforCycleT49Example4Acustomerservicemanagerwantstodeterminetheprocesscapabilityforhisdepartment.Aprimaryperformanceindexisthetimetakentocloseacustomercomplaint.Thegoalforthisindexistocloseacomplaintwithinonecalendarweek.Performanceoverthelast400complaintswasreviewed.Example4Acustomerservicema50Example4StatQualityToolsCapabilityAnalysis(Weibull)Example4StatQualityTools51Example4Example452Example4AStatQualityToolsCapabilitySixpack(Weibull)Example4AStatQualityTools53Example4AExample4A54ProcessCapabilityforRejectRateForaNormalDistribution,theproportionofpartsproducedbeyondaspecificationlimitisRejectRateProcessCapabilityforReject55ProcessCapabilityforRejectRateThus,foreveryrejectratethereisanaccompanyingZ-Score,whereRecallthatHenceProcessCapabilityforReject56ProcessCapabilityforRejectRateEstimationofPpkforRejectRateDeterminethelong-termrejectrate(p)Determinetheinversecumulativeprobabilityforp, usingCalcProbabilityDistributionNormalZ-ScoreisthemagnitudeofthereturnedvaluePpkisone-thirdoftheZ-ScoreProcessCapabilityforReject57Example5Asalesmanagerplanstoassesstheprocesscapabilityofhistelephonesalesdepartment’shandlingofincomingcalls.Thefollowingdatawascollectedoveraperiodof20days:numberofincomingcallsperdaynumberofunansweredcallsperdaysExample5Asalesmanagerplans58Example5StatQualityToolsCapabilityAnalysis(Binomial)Example5StatQualityTools59Example5Ppk=0.25Example5Ppk=0.2560ProcessCapabilityforDefectRateOtherapplications,approximatingaPoissonDistribution:errorratesparticlecountchemicalconcentrationProcessCapabilityforDefect61ProcessCapabilityforDefectRateEstimationofYtpforDefectRateDefinesizeofaninspectionunitDeterminethelong-termdefectsperunit(DPU) DPU =TotalDefectsTotalUnitsDeterminethethroughputyield(Ytp) Ytp =exp{–DPU}ProcessCapabilityforDefect62ProcessCapabilityforDefectRateEstimationofSigma-CapabilityforDefectRateDeterminetheopportunitiesperunitDeterminethelong-termdefectsperopportunity(d)
d =defectsperunitopportunitiesperunitDeterminetheinversecumulativeprobabilityford, usingCalcProbabilityDistributionNormalZ-ScoreisthemagnitudeofthereturnedvalueSigma-Capability=Z-Score+1.5ProcessCapabilityforDefect63Example6Theprocessmanagerforawiremanufacturerisconcernedabouttheeffectivenessofthewireinsulationprocess.Randomlengthsofelectricalwiringaretakenandtestedforweakspotsintheirinsulationbymeansofatestvoltage.Thenumberofweakspotsandthelengthofeachpieceofwirearerecorded.Example6Theprocessmanagerf64Example6StatQualityToolsCapabilityAnalysis(Poisson)Example6StatQualityTools65Example6DefectsperUnit=0.0265194ThroughputYield=exp{–DPU}=exp{–0.0265194}=0.9738c.f.First-TimeYield=2/100=0.02Example6DefectsperUnit66Example6Define 1InspectionUnit =125unitlengthofwirei.e. Units =Length
125Example6Define67Example6AStatQualityToolsCapabilityAnalysis(Poisson)Example6AStatQualityTools68Example6ADefectsperUnit=3.31493ThroughputYield=exp{–DPU}=exp{–3.31493}=0.0363c.f.First-TimeYield=2/100=0.02Example6ADefectsperUnit69Example6BDefectsperUnit=3.31493OpportunitiesperUnit=1DefectsperOpportunity=3.31493Z-Score=???Example6BDefectsperUnit70Example6B1inspectionunit=1unitlengthofwireOpportunitiesperUnit=1DefectsperOpportunity=32912,406=0.0265Z-Score=Abs{–1(0.0265)}=1.935Sigma-Capability=Z-Score+1.5=3.435Example6B1inspectionunit7104十一月2022六西格玛黑带培训教材01十一月2022六西格玛黑带培训教材72ScopeofModuleProcessVariationProcessCapabilitySpecification,ProcessandControlLimitsProcessPotentialvsProcessPerformanceShort-TermvsLong-TermProcessCapabilityProcessCapabilityforNon-NormalDataCycle-Time (ExponentialDistribution)RejectRate (BinomialDistribution)DefectRate (PoissonDistribution)ScopeofModuleProcessVariati73ProcessVariationProcessVariationistheinevitabledifferencesamongindividualmeasurementsorunitsproducedbyaprocess.SourcesofVariationwithinunit (positionalvariation)betweenunits (unit-unitvariation)betweenlots (lot-lotvariation)betweenlines (line-linevariation)acrosstime (time-timevariation)measurementerror (repeatability&reproducibility)ProcessVariationProcessVaria74TypesofVariationInherentorNaturalVariationDuetothecumulativeeffectofmanysmallunavoidablecausesAprocessoperatingwithonlychancecausesofvariationpresentissaidtobe“instatisticalcontrol”TypesofVariationInherentor75TypesofVariationSpecialorAssignableVariationMaybedueto a)improperlyadjustedmachine b)operatorerror c)defectiverawmaterialAprocessoperatinginthepresenceofassignablecausesofvariationissaidtobe“out-of-control”TypesofVariationSpecialorA76ProcessCapabilityProcessCapabilityistheinherentreproducibilityofaprocess’soutput.Itmeasureshowwelltheprocessiscurrentlybehavingwithrespecttotheoutputspecifications.Itreferstotheuniformityoftheprocess.Capabilityisoftenthoughtofintermsoftheproportionofoutputthatwillbewithinproductspecificationtolerances.Thefrequencyofdefectivesproducedmaybemeasuredina) percentage(%)b) partspermillion(ppm)c) partsperbillion(ppb)ProcessCapabilityProcessCapa77ProcessCapabilityProcessCapabilitystudiescan
indicatetheconsistencyoftheprocessoutputindicatethedegreetowhichtheoutputmeetsspecificationsbeusedforcomparisonwithanotherprocessorcompetitorProcessCapabilityProcessCapa78ProcessCapabilityvsSpecificationLimitsa)b)c)a)Processishighlycapableb)Processismarginallycapablec)ProcessisnotcapableProcessCapabilityvsSpecific79ThreeTypesofLimitsSpecificationLimits(LSLandUSL)createdbydesignengineeringinresponsetocustomerrequirementstospecifythetoleranceforaproduct’scharacteristicProcessLimits(LPLandUPL)measuresthevariationofaprocessthenatural6limitsofthemeasuredcharacteristicControlLimits(LCLandUCL)measuresthevariationofasamplestatistic(mean,variance,proportion,etc)ThreeTypesofLimitsSpecifica80ThreeTypesofLimitsDistributionofIndividualValuesDistributionofSampleAveragesThreeTypesofLimits81ProcessCapabilityIndicesTwomeasuresofprocesscapabilityProcessPotentialCp
ProcessPerformanceCpu
Cpl
Cpk
ProcessCapabilityIndicesTwo82ProcessPotentialTheCpindexassesseswhetherthenaturaltolerance(6)ofaprocessiswithinthespecificationlimits.ProcessPotentialTheCpindex83ProcessPotentialACpof1.0indicatesthataprocessisjudgedtobe“capable”,i.e.iftheprocessiscenteredwithinitsengineeringtolerance,0.27%ofpartsproducedwillbebeyondspecificationlimits. Cp RejectRate 1.00 0.270% 1.33 0.007% 1.50 6.8ppm 2.00 2.0ppbProcessPotentialACpof1.0i84ProcessPotentiala)b)c)a)Processishighlycapable(Cp>2)b)Processiscapable(Cp=1to2)c)Processisnotcapable(Cp<1)ProcessPotentiala)b)c)85ProcessPotentialTheCpindexcomparestheallowablespread(USL-LSL)againsttheprocessspread(6).Itfailstotakeintoaccountiftheprocessisnotcenteredbetweenthespecificationlimits.ProcessiscenteredProcessisnotcenteredProcessPotentialTheCpindex86ProcessPerformanceTheCpkindexrelatesthescaleddistancebetweentheprocessmeanandthenearestspecificationlimit.ProcessPerformanceTheCpkind87ProcessPerformance Cpk RejectRate 1.0 0.13–0.27% 1.1 0.05–0.10% 1.2 0.02–0.03% 1.3 48.1–96.2ppm 1.4 13.4–26.7ppm 1.5 3.4–6.8ppm 1.6 794–1589ppb 1.7 170–340ppb 1.8 33–67ppb 1.9 6–12ppb 2.0 1–2ppbProcessPerformance Cpk Reje88ProcessPerformancea)Processishighlycapable(Cpk>1.5)b)Processiscapable(Cpk=1to1.5)c)Processisnotcapable(Cpk<1)a)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1ProcessPerformancea)Cp=2b)C89Example1SpecificationLimits : 4to16gMachine Mean StdDev (a) 10 4 (b) 10 2 (c) 7 2 (d) 13 1DeterminethecorrespondingCpandCpkforeachmachine.Example1SpecificationLimits 90Example1AExample1A91Example1BExample1B92Example1CExample1C93Example1DExample1D94ProcessCapabilityForanormallydistributedcharacteristic,thedefectiverateF(x)maybeestimatedviathefollowing:Forcharacteristicswithonlyonespecificationlimit:a) LSLonlyb) USLonlyLSLUSLProcessCapabilityForanormal95Example2SpecificationLimits : 4to16gMachine Mean StdDev (a) 10 4 (b) 10 2 (c) 7 2 (d) 13 1Determinethedefectiverateforeachmachine.Example2SpecificationLimits 96Example2MeanStdDevZLSLZUSLF(x<LSL)F(x>USL)F(x) 10 4 -1.5 1.5 66,807 66,807 133,614 10 2 -3.0 3.0 1,350 1,350 2,700 7 2 -1.5 4.5 66,8073 66,811 13 1 -9.0 3.0 0 1,350 1,350 LowerSpecLimit =4gUpperSpecLimit =16gExample2MeanStdDevZL97ProcessPotentialvsProcessPerformance(a)PoorProcessPotential (b)PoorProcessPerformanceLSLUSLLSLUSLExperimentalDesigntoreducevariationExperimentalDesigntocentermeantoreducevariationProcessPotentialvsProcessP98ProcessPotentialvsProcessPerformance ProcessPotentialIndex(Cp)Cpk
1.0 1.2 1.4 1.6 1.8 2.0
1.0
2,699.9 1,363.3 1,350.0 1,350.0 1,350.0 1,350.0
1.2
318.3 159.9 159.1 159.1 159.1
1.4
26.7 13.4 13.4 13.4
1.6
1.6 0.8 0.8
1.8
0.1 0.0
2.0
0.0
DefectiveRate(measuredindppm)isdependentontheactualcombinationofCpandCpk..ProcessPotentialvsProcessP99ProcessPotentialvsProcessPerformancea)Cp=2Cpk=2b)Cp=2Cpk=1c)Cp=2Cpk<1Cp–Cpk
MissedOpportunityProcessPotentialvsProcessP100AlternativeProcessPerformanceIndexProcesscapabilitystatisticsmeasureprocessvariationrelativetospecificationlimits.TheCpstatisticcomparestheengineeringtoleranceagainsttheprocess’snaturalvariation.TheCpkstatistictakesintoaccountthelocationoftheprocessrelativetothemidpointbetweenspecifications.Iftheprocesstargetisnotcenteredbetweenspecifications,theCpmstatisticispreferred.AlternativeProcessPerformanc101ProcessStabilityAprocessisstableifthedistributionofmeasurementsmadeonthegivenfeatureisconsistentovertime.TimeStableProcessTimeUnstableProcessucllclucllclProcessStabilityAprocessis102WithinvsOverallCapabilityWithinCapability(previouslycalledshort-termcapability)showstheinherentvariabilityofamachine/processoperatingwithinabriefperiodoftime.OverallCapability(previouslycalledlong-termcapability)showsthevariabilityofamachine/processoperatingoveraperiodoftime.Itincludessourcesofvariationinadditiontotheshort-termvariability.WithinvsOverallCapabilityWi103WithinvsOverallCapability Within OverallSampleSize 30–50units 100unitsNumberofLots singlelot severallotsPeriodofTime hoursordays weeksormonthsNumberofOperators singleoperator differentoperatorsProcessPotential Cp Pp
ProcessPerformance Cpk Ppk
WithinvsOverallCapability 104WithinvsOverallCapability WithinCapability OverallCapability ThekeydifferencebetweenthetwosetsofindicesliesintheestimatesforWithinandOverall.WithinvsOverallCapability W105EstimatingWithinandOverall
ConsiderthefollowingobservationsfromaControlChart:
S/N X1 X2 …Xk Mean Range StdDev 1 x1,1 x2,1 …xk,1 X1 R1 S1 2 x1,2 x2,2 …xk,2 X2 R2 S2 : : : : : : : m x1,m x2,m …xk,m Xm Rm SmTheoverallvariationOverall
isestimatedby–––EstimatingWithinandOveral106EstimatingWithinandOverall
ThewithinvariationWithin
maybeestimatedbyoneofthefollowing:(a) R-barMethod where d2isaShewhartconstant=(k)(b) S-barMethod where c4isaShewhartconstant=(k)(c) PooledStandardDeviationMethodInMiniTab,thePooledStandardDeviationisthedefaultmethod.EstimatingWithinandOveral107EstimatingWithinandOverall
Incaseswherethereisonly1observationpersub-group(i.e.k=1),theMovingRangeMethodisused,where .ThewithinvariationWithin
isthenestimatedusingeithera) theAverageMovingRange:b) theMedianMovingRange:EstimatingWithinandOveral108Example3Thelengthofacamshaftforanautomobileengineisspecifiedat600±2mm.Controlofthelengthofthecamshaftiscriticaltoavoidscrap/rework.Thecamshaftisprovidedbyanexternalsupplier.Assesstheprocesscapabilityforthissupplier.ThedataisavailableinProcessCapabilityAnalysis.MTW.Example3Thelengthofacamsh109Example3StatQualityToolsCapabilityAnalysis(Normal)Example3StatQualityTools110Example3Example3111Example3AHistogramofcamshaftlengthsuggestsmixedpopulations.Furtherinvestigationrevealedthattherearetwosuppliersforthecamshaft.Datawascollectedovercamshaftsfrombothsources.Arethetwosupplierssimilarinperformance?Ifnot,whatareyourrecommendations?Example3AHistogramofcamsha
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届湖南明德中学高三化学第一学期期中复习检测模拟试题含解析
- 2025年二季度骨科护理技术操作常见并发症理论考试题及答案
- 2025年保健品考试题及答案
- 2026届辽宁省本溪中学化学高三上期末质量检测模拟试题含解析
- 2025年陪诊师模拟考试题库及答案
- 2025年环保保护试题及答案
- 2025年注册验船师资格考试(C级船舶检验专业能力)模拟试题及答案二
- 2025年高级运动营养师实操技能解析与模拟题
- 2025年人力资源管理师专业技能测试题库
- 桃花源记app课件
- 《患者的安全转运》课件
- 市政工程交通导行方案
- 梁的弯曲振动-振动力学课件
- 说专业-物流管理专业
- 用友U8全产品功能介绍
- 医院突发公共卫生事件应急预案
- GMAT数学概念单词
- 三基考试题库3
- 化工安全与环保PPT
- 流体力学的课件
- 《城市管理综合执法问题研究国内外文献综述》4800字
评论
0/150
提交评论