




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.对于反比例函数,下列说法正确的是A.图象经过点(1,﹣3) B.图象在第二、四象限C.x>0时,y随x的增大而增大 D.x<0时,y随x增大而减小2.下列等式从左到右变形中,属于因式分解的是()A. B.C. D.3.用配方法解方程时,方程可变形为()A. B. C. D.4.下列图形中是中心对称图形又是轴对称图形的是()A. B. C. D.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y36.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定7.一个袋中有黑球个,白球若干,小明从袋中随机一次摸出个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程次,发现共有黑球个.由此估计袋中的白球个数是()A.40个 B.38个 C.36个 D.34个8.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形9.如图,AB、BC、CD、DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是A.14 B.12 C.9 D.710.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.12.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.13.计算:=______.14.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.15.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___确定一个圆.(填“能”或“不能”)17.如图,中,,以点为圆心的圆与相切,则的半径为________.18.如图,直线AB与⊙O相切于点C,点D是⊙O上的一点,且∠EDC=30°,则∠ECA的度数为_________.三、解答题(共66分)19.(10分)体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:(1)经过两次踢球后,足球踢到小华处的概率是多少?(2)经过三次踢球后,足球踢回到小强处的概率是多少?20.(6分)(1)解方程(2)计算21.(6分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.22.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE//y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。23.(8分)某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:(1)填空:;;(2)观察第(1)题的计算结果回答:一定等于;(3)根据(1)、(2)的计算结果进行分析总结的规律,计算:24.(8分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.25.(10分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.26.(10分)在一个不透明的盒子里装有4个分别标有:﹣1、﹣2、0、1的小球,它们的形状、大小完全相同,小芳从盒子中随机取出一个小球,记下数字为x,作为点M的横坐标:小华在剩下的3个小球中随机取出一个小球,记下数字为y,作为点M的纵坐标.(1)用画树状图或列表的方式,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=的图象上的概率.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析:A、∵反比例函数,∴当x=1时,y=3≠﹣3,故图象不经过点(1,﹣3),故此选项错误;B、∵k>0,∴图象在第一、三象限,故此选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故此选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故此选项正确.故选D.2、D【分析】直接利用因式分解的定义分析得出答案.【详解】A.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;B.,右边不是整式的积的形式,不符合因式分解的定义,故此选项错误;C.,属于整式乘法运算,不符合因式分解的定义,故此选项错误;D.),属于因式分解,符合题意;故选:D.【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.3、D【详解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故选D.【点睛】本题考查解一元二次方程-配方法,掌握配方法的步骤进行计算是解题关键.4、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可.【详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A.【点睛】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键.5、B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.6、A【解析】∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.7、D【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率再近似估计白球数量.【详解】解:设袋中的白球的个数是个,根据题意得:解得故选:D【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.8、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.9、D【分析】根据切线长定理,可以证明圆的外切四边形的对边和相等,由此即可解决问题.【详解】∵AB、BC、CD、DA都是⊙O的切线,∴可以假设切点分别为E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故选D.【点睛】本题考查切线的性质、切线长定理等知识,解题的关键是证明圆的外切四边形的对边和相等,属于中考常考题型.10、D【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.二、填空题(每小题3分,共24分)11、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.12、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.13、-1.【分析】由题意根据负整数指数幂和零指数幂的定义求解即可.【详解】解:=1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查负整数指数幂和零指数幂的定义,熟练掌握实数的运算法则以及负整数指数幂和零指数幂的运算方法是解题的关键.14、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【详解】画树状图如下:∵共有6种可能情况,恰好两只手套凑成同一双的情况有2种,∴恰好两只手套凑成同一双的概率为,故答案为:【点睛】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.15、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).16、不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17、【解析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.18、30°【分析】连接OE、OC,根据圆周角定理求出∠EOC=60°,从而证得为等边三角形,再根据切线及等边三角形的性质即可求出答案.【详解】解:如图所示,连接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴为等边三角形,∴∠ECO=60°,∵直线AB与圆O相切于点C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案为:30°.【点睛】本题考查了圆的基本性质、圆周角定理及切线的性质,等边三角形的判定与性质,熟练掌握各性质判定定理是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)根据画列表法或树状图求概率;(2)根据画列表法或树状图求概率【详解】解:(1)画树状图如下图所示:由树状图可知,(经过两次踢球后,足球踢到小华处).(2)画树状图如下图所示:由树状图可知,(经过三次踢球后,足球踢回到小强处).【点睛】本题考查了根据画树状图求概率20、(1);(2)1.【分析】(1)根据因式分解法解方程,即可得到答案;(2)分别计算绝对值,特殊角的三角函数,二次根式,负整数指数幂,然后再进行合并,即可得到答案.【详解】解:(1),∴,∴,∴;(2),.【点睛】本题考查了解一元二次方程,实数的混合运算,解题的关键是掌握解一元二次方程的方法,以及实数混合运算的运算法则.21、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,根据垂直平分线的性质即可确定其它的顶点;(2)先求出内接八边形的中心角,然后根据正方形的性质即可找到各个顶点.【详解】(1)设AO的延长线与圆交于点D,根据圆的内接正六边形的性质,点D即为正六边形的一个顶点,且正六边形的边长等于圆的半径,即OB=AB,故在图中找到AO的中垂线与圆的交点即为正六边形的顶点B和F;同理:在图中找到OD的中垂线与圆的交点即为正六边形的顶点C和E,连接AB、BC、CD、DE、EF、FA,如图①,正六边形即为所求.(2)圆的内接八边形的中心角为360°÷8=45°,而正方形的对角线与边的夹角也为45°∴在如②图所示的正方形OMNP中,连接对角线ON并延长,交圆于点B,此时∠AON=45°;∵∠NOP=45°,∴OP的延长线与圆的交点即为点C同理,即可确定点D、E、F、G、H的位置,顺次连接,如图②,正八边形即为所求.【点睛】此题考查的是画圆的内接正六边形和内接正八边形,掌握圆的内接正六边形和内接正八边形的性质和中心角的求法是解决此题的关键.22、(1)(-1,0),(3,0);(2);(3)1.【分析】(1)根据OA,OB的长,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据相似三角形的判定与性质,可得EG,EF的长,根据整式的加减,可得答案.【详解】解:(1)由抛物线交轴于两点(A在B的左侧),且OA=1,OB=3,得A点坐标(-1,0),B点坐标(3,0);(2)设抛物线的解析式为,把C点坐标代入函数解析式,得解得,抛物线的解析式为;(3)EF+EG=1(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图:设P(t,-t2+2t+3),则PQ=-t2+2t+3,AQ=1+t,QB=3-t,∵PQ∥EF,∴△BEF∽△BQP∴∴又∵PQ∥EG,∴△AEG∽△AQP,∴∴∴.【点睛】本题考查了二次函数综合题,解(1)的关键是利用点的坐标表示方法;解(2)的关键是利用待定系数法;解(3)的关键是利用相似三角形的性质得出EG,EF的长,又利用了整式的加减.23、(1)3,1;(2);(3).【分析】(1)依据被开方数即可计算得到结果;(2)观察计算结果不一定等于a,应根据a的值来确定答案;(3)原式利用得出规律计算即可得到结果.【详解】(1),;故答案为:3,1.(2)=|a|,故答案为:|a|;(3)∵a<b,∴a−b<0,∴=|a-b|=b−a.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.24、(1)x1=−3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.25、(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得AD=AB=,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际商标续展与全球商标运营及知识产权布局与运营代理合同
- 网贷逾期债务共管及处置合作协议
- 孩子监护权变更及探视安排合同
- 微信小程序电商运营专业培训与项目实施合同
- 抖音短视频助力乡村文化振兴合作协议
- 国际婚姻忠诚协议与国际私法适用服务合同
- 数据安全与知情权平衡的委托加工合同
- 历史建筑群三维激光扫描与保护利用合同
- 高性能工业模具设计专利授权与产业化合作协议
- 房地产行政助理派遣与办公环境改善及维护协议
- 《幼儿园角色游戏》课件
- 演唱会安保工作委托合同
- TSG ZF001-2006《安全阀安全技术监察规程》
- 岭南版美术八年级上册11课 传统纹饰·民族风格(教学设计)
- (高清版)DB42T 2179-2024 装配式建筑评价标准
- 矫形鞋垫产品技术要求标准2024年版
- 2024年江西省南昌市中考生物·地理合卷试卷真题(含答案逐题解析)
- Photoshop平面设计与制作智慧树知到期末考试答案章节答案2024年黑龙江农业工程职业学院(松北校区)
- DL∕T 796-2012 风力发电场安全规程
- 急诊科骨髓腔穿刺及输液技术
- 法律人生智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
评论
0/150
提交评论