




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知点、B(-1,y2)、C(3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y32.如图,矩形的对角线交于点O,已知则下列结论错误的是()A. B.C. D.3.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:14.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.5.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.18° B.24° C.30° D.26°6.如图,已知直线,直线、与、、分别交于点、、和、、,,,,()A.7 B.7.5 C.8 D.4.57.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.8.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和9.如图,在中,,,,点在边上,且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是()A.3.2 B.2 C.1.2 D.110.已知线段,,如果线段是线段和的比例中项,那么线段的长度是().A.8; B.; C.; D.1.二、填空题(每小题3分,共24分)11.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.12.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C′,D′处,且点C′,D′,B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为___(用含t的代数式表示).13.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.14.若,则=_____.15.已知菱形ABCD的两条对角线相交于点O,若AB=6,∠BDC=30°,则菱形的面积为.16.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.17.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.18.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.三、解答题(共66分)19.(10分)组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?20.(6分)如图,在平面直角坐标系中,A,B.(1)作出与△OAB关于轴对称的△;(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?21.(6分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)(1)售价为多少时可以使每天的利润最大?最大利润是多少?(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?22.(8分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.(1)求证:DE是⊙O的切线;(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.23.(8分)如图,已知是的直径,点是延长线上一点过点作的切线,切点为.过点作于点,延长交于点.连结,,,.若,.(1)求的长。(2)求证:是的切线.(3)试判断四边形的形状,并求出四边形的面积.24.(8分)先化简,再求值:,其中﹣2≤a≤2,从中选一个你喜欢的整数代入求值.25.(10分)如图:在平面直角坐标系中,直线:与轴交于点,经过点的抛物线的对称轴是.(1)求抛物线的解析式.(2)平移直线经过原点,得到直线,点是直线上任意一点,轴于点,轴于点,若点在线段上,点在线段的延长线上,连接,,且.求证:.(3)若(2)中的点坐标为,点是轴上的点,点是轴上的点,当时,抛物线上是否存在点,使四边形是矩形?若存在,请求出点的坐标,如果不存在,请说明理由.26.(10分)武汉市某中学进行九年级理化实验考查,有A和B两个考查实验,规定每位学生只参加一个实验的考查,并由学生自己抽签决定具体的考查实验,小孟、小柯、小刘都要参加本次考查.(1)用列表或画树状图的方法求小孟、小柯都参加实验A考查的概率;(2)他们三人中至少有两人参加实验B的概率(直接写出结果).
参考答案一、选择题(每小题3分,共30分)1、D【分析】分别把各点坐标代入反比例函数y=,求出y1,y2,y1的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(1,y1)
都在反比例函数y=的图象上,
∴y1=-2,y2=-4,y1=,∵-4<-2<,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、C【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.【详解】选项A,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,选项A正确;选项B,在Rt△ABC中,tanα=,即BC=m•tanα,选项B正确;选项C,在Rt△ABC中,AC=,即AO=,选项C错误;选项D,∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,选项D正确.故选C.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.3、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.4、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.5、B【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.6、D【分析】根据平行线分线段成比例定理,列出比例式解答即可.【详解】∵∴即:故选:D【点睛】本题考查的是平行线分线段成比例定理,掌握定理的内容并能正确的列出比例式是关键.7、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.8、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.9、C【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以1为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】如图所示:当PE∥AB.在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,由翻折的性质可知:PF=FC=1,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即,解得:DF=2.1.∴PD=DF-FP=2.1-1=1.1.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题10、A【解析】根据线段比例中项的概念,可得,可得,解方程可求.【详解】解:若是、的比例中项,即,∴,∴,故选:.【点睛】本题考查了比例中项的概念,注意:求两条线段的比例中项的时候,负数应舍去.二、填空题(每小题3分,共24分)11、1【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简,得出答案.【详解】原式=1+1﹣1=1.故答案为:1.【点睛】本题主要考查零指数幂的性质以及负整数指数幂的性质,牢记负整数指数幂的计算方法,是解题的关键.12、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题.【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:.【点睛】本题考查折叠问题、等边三角形的判定与性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.13、【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.14、【解析】根据两内项之积等于两外项之积列式整理即可得解.【详解】∵,
∴4(a-b)=3b,
∴4a=7b,
∴,
故答案为:.【点睛】本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.15、18【详解】∵ABCD是菱形,两条对角线相交于点O,AB=6∴CD=AB=6,AC⊥BD,且OA=OC,OB=OD在Rt△COD中,∵CD=6,∠BDC=30°∴∴∴16、直线x=2【解析】试题分析:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==1考点:二次函数的性质17、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将55000000用科学记数法表示为:5.5×1,故答案为:5.5×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、【解析】试题分析:列表得:
黑1
黑2
白1
白2
黑1
黑1黑1
黑1黑2
黑1白1
黑1白2
黑2
黑2黑1
黑2黑2
黑2白1
黑2白2
白1
白1黑1
白1黑2
白1白1
白1白2
白2
白2黑1
白2黑2
白2白1
白2白2
共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.三、解答题(共66分)19、比赛组织者应邀请8个队参赛.【解析】本题可设比赛组织者应邀请x队参赛,则每个队参加(x-1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.解:设比赛组织者应邀请个队参赛.依题意列方程得:,解之,得,.不合题意舍去,.答:比赛组织者应邀请8个队参赛.“点睛”本题是一元二次方程的求法,虽然不难求出x的值,但要注意舍去不合题意的解.20、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1B2的垂直平分线,因此可以判断两个图形关于直线对称.【详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-4),∴直线B1B2的解析式为,∴直线OB为直线B1B2的垂直平分线,∴两个图形关于直线对称,即△可由△沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到.【点睛】本题考查了旋转的坐标变换,做旋转图形,轴对称图形的判断,是图形变化中的重点题型,关键是先作出对应点,然后进行连线.21、(1)每瓶竹叶青酒售价为元时,利润最大,最大利润为元;(2)要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.【分析】(1)设每瓶竹叶青酒售价为元,每天的销售利润为元,根据“当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶”即可列出二次函数,再整理成顶点式即可得出;(2)由题意得,再根据二次函数的性质即可得出.【详解】解:(1)设每瓶竹叶青酒售价为元,每天的销售利润为元.则:,整理得:.,当时,取得最大值.每瓶竹叶青酒售价为元时,利润最大,最大利润为元.(2)每天的利润为元时,.解得:,.,由二次函数图象的性质可知,时,.要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.【点睛】本题考查了二次函数的应用,根据题意找到关系式是解题的关键.22、(1)证明见解析;(2)【分析】(1)由等腰三角形的性质可得∠C=∠B,∠ODB=∠C,从而∠ODB=∠C,根据同位角相等两直线平行可证OD∥AC,进而可证明结论;(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF;②当点E在线段AC上时,围成的图形为梯形AODE.根据三角形和梯形的面积公式列出函数关系式,利用二次函数的性质求解.【详解】证明:(1)连接OD,∵AB=AC,∴∠C=∠B.∵OB=OD,∴∠ODB=∠B∴∠ODB=∠C∴OD∥AC.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF.∵OD=OB=x,∠B=30°,∴∠FOD=60°,∵∠ODE=90°,∴DF=x,∴S△ODF=x·x=,(0<x≤)当x=时,S△ODF最大,最大值为;②当点E在线段AC上时,围成的图形为梯形AODE.∵AB=AC=10,∠B=30°,∴BC=10,作OH⊥BC,∵OD=OB=x,∠B=30°,∴BD=2BH=x,∴CD=10-x,∵∠C=30°,∠DEC=90°,∴DE=(10-x),CE=(10-x)=15-x,∴AE=x-5,∴S梯形AODE=(x-5+x)·(10-x)=(-+12x-20)(<x<10)当x=6时,S梯形AODE最大,最大值为10;综上所述,当x=6时,重合部分的面积最大,最大值为10.点睛:本题考查了等腰三角形的性质,平行线的判定与性质,切线的判定,解直角三角形,三角形和梯形的面积公式,二次函数的性质,知识点比较多,难度比较大.熟练掌握切线的判定方法及二次函数的性质是解答本题的关键.23、(1)BD=2;(2)见解析;(3)四边形ABCD是菱形,理由见解析.菱形ABCD得面积为6.【分析】(1)根据题意连结BD,利用切线定理以及勾股定理进行分析求值;(2)根据题意连结OB,利用垂直平分线性质以及切线定理进行分析求值;(3)由题意可知四边形ABCD是菱形,结合勾股定理利用菱形的判定方法进行求证.【详解】解:(1)连结BDDE=CE∴∠DCE=∠EDC∵⊙O与CD相切于点D,∴OD⊥DC,∠ODC=90°∠ODE+∠CDE=90°∠DOC+∠DCO=90°,∠DCE=∠EDC∠ODE=∠DOEDE=OE∵在⊙O中,OE=ODOE=OD=DE∠DOE=60°∵在⊙O中,AE⊥DBBD=2DF∵在Rt△COE中,∠ODF-90°-∠DOE=90°-60°=30°∴OD=2OF∵EF=1,设半径为R,OF=OE-FE=R-1∴R=2(R-1),解得R=2∴BD=2DF=2(2)连结OB∵在⊙O中,AE⊥DBBF=DFAC是DB的垂直平分线∴OD=0B,CD=CB∴∠ODB=∠OBD,∠CDB=∠CBD∴∠ODB+∠CDB=∠OBD+∠CBD即∠ODC=∠OBC由(1)得∠ODC=90°∴∠OBC=90°即OB⊥BC又OB是⊙O的半径∴CB是⊙O的切线(3)四边形ABCD是菱形,理由如下∵由(1)得在⊙O中,∠DOE=60°,∠ODC=90°∴∠DAO=∠DOE=30°∵由(1)得∠ODC=90°∴∠OCD=90°-∠DOC=90°-60°=30°∴∠DAO=∠OCD∴DA=CD∵由(2)得AD=AB,CD=BC∴AD=DC=BC=AB∴四边形ABCD是菱形∵在Rt△AFD中,DF=,∠DAC=30°∴AD=2DF=2∵四边形ABCD是菱形∴AC=2AF=6,BD=2DF=2∴菱形ABCD得面积为:×AC×DB=×6×2=6.【点睛】本题考查切线的性质、等边三角形的判定和性质、菱形的判定和性质以及解直角三角形,熟练掌握并综合利用其进行分析是解题关键.24、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出的值,代入计算即可求出值.【详解】解:原式=,∵﹣2≤a≤2,且a为整数,∴a=0,1,﹣2时没有意义,a=﹣1或2,当a=﹣1时,原式=﹣2;当a=2时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25、(1);(2/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省济南第二中学2024-2025学年高三下学期第二次阶段检测试题-物理试题试卷含解析
- 山东省济南市育英中学2025年5月普通高中毕业班质量试卷英语试题试卷含答案
- 四川省达川区市级名校2025年5月初三压轴卷语文试题试卷含解析
- 2025年物理学科的基本概念试题及答案
- 2025年数字营销行业知识考试试题及答案
- 南京科技职业学院《陶瓷装饰》2023-2024学年第一学期期末试卷
- 2025年中小学语文试卷及答案
- 江城哈尼族彝族自治县2024-2025学年数学三下期末综合测试试题含解析
- 苏州科技大学天平学院《电工》2023-2024学年第二学期期末试卷
- 辽宁工程技术大学《市政工程预算》2023-2024学年第二学期期末试卷
- 消防气防培训
- 2025年湖南省各市州农电服务有限公司招聘笔试参考题库含答案解析
- 突发性听觉丧失的护理
- 2024年演出经纪人《文学艺术史基础知识》三色速记手册
- 暂予监外执行申请书
- 第二版临床护理技术规范部分试题第十一章
- 国家开放大学本科《商务英语3》一平台在线形考(单元自测1至8)试题及答案2025珍藏版
- 2022新疆中考物理试卷真题及答案解析(历年9卷)
- 《微生物学检验》课程标准(含课程思政)
- 七年级下学期地理期中考试卷(附答案)
- 企业信息化建设与实施考核试卷
评论
0/150
提交评论