




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列算式正确的是()A. B. C. D.2.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)3.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(
)A.甲 B.乙 C.丙 D.丁4.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm5.二次函数下列说法正确的是()A.开口向上 B.对称轴为直线C.顶点坐标为 D.当时,随的增大而增大6.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=7.已知反比例函数,下列结论;①图象必经过点;②图象分布在第二,四象限;③在每一个象限内,y随x的增大而增大.其中正确的结论有()个.A.3 B.2 C.1 D.08.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A. B. C.- D.9.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)10.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.12.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.13.二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是___________________________.14.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.15.如图,为了测量塔的高度,小明在处仰望塔顶,测得仰角为,再往塔的方向前进至处,测得仰角为,那么塔的高度是____________.(小明的身高忽略不计,结果保留根号)16.在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点.若点,则的坐标为__________.17.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.18.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.三、解答题(共66分)19.(10分)“互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可售价100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.(1)直接写出与的函数关系式;(2)设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?20.(6分)如图,抛物线y=ax2+bx+4(a≠0)与轴交于点B(-3,0)和C(4,0)与轴交于点A.(1)a=,b=;(2)点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3)点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.21.(6分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.(1)求点的铅直高度;(2)求两点的水平距离.(结果精确到,参考数据:)22.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.23.(8分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.24.(8分)如图,在平面直角坐标系中,正比例函数的图象与反比例函数的图象经过点.(1)分别求这两个函数的表达式;(2)将直线向上平移个单位长度后与轴交于,与反比例函数图象在第一象限内的交点为,连接,,求点的坐标及的面积.25.(10分)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.如图1,把一张顶角为36º的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,我们把这两条线段叫做等腰三角形的三分线.(1)如图2,请用两种不同的方法画出顶角为45º的等腰三角形的三分线,并标注每个等腰三角形顶角的度数:(若两种方法分得的三角形成3对全等三角形,则视为同一种).(2)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.26.(10分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A.,故不正确;B.,正确;C.,故不正确;D.,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.2、A【解析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.【详解】如图,.故选A.【点睛】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.3、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.4、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.5、D【分析】根据解析式即可依次判断正确与否.【详解】∵a=-2∴开口向下,A选项错误;∵,∴对称轴为直线x=-1,故B错误;∵,∴顶点坐标为(-1,-4),故C错误;∵对称轴为直线x=-1,开口向下,∴当时,随的增大而增大,故D正确.故选:D.【点睛】此题考查二次函数的性质,掌握不同函数解析式的特点,各字母代表的含义,并熟练运用解题是关键.6、D【解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.7、A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y随x的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.8、A【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.9、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.10、C【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,
∴对称轴x==1.5;
点(-1,0)关于对称轴对称点为(4,0),
因此它的图象与x轴的另一个交点坐标是(4,0).
故选C.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题3分,共24分)11、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD′的长,即可得到答案.【详解】解:因为点D(4,1)在边AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB顺时针旋转90°,
则点D′在x轴上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆时针旋转90°,
则点D′到x轴的距离为8,到y轴的距离为3,
所以D′(3,8),∴;
故答案为:3或.【点睛】此题主要考查了坐标与图形变化——旋转,考查了分类讨论思想的应用,解答此题的关键是要注意分顺时针旋转和逆时针旋转两种情况.12、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.13、k≤3且k≠0【解析】根据题意得,(-6)2-4×3k≥0且k≠0,所以k≤3且k≠0,故答案为k≤3且k≠0.14、1【解析】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在的图象上,∴k=6;即,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数的函数值相等,又x=3时,,∴点Q的坐标为(2025,4),即n=4,∴=故答案为1.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.15、【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,
∴∠ADB=∠DBC-∠A=30°,
∴∠ADB=∠A=30°,
∴BD=AB=60m,
∴CD=BD•sin60°=60×=30(m).
故答案为:30.【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.16、【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,根据相似比即可求得位似图形对应点的坐标.【详解】由题意,得和是以坐标原点为位似中心的位似图形,相似比为2则的坐标为,故答案为:.【点睛】此题考查了位似图形与坐标的关系,熟练掌握,即可解题.17、②④【解析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【详解】:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵b=-2a,
∴2a+b=0,所以②正确;
∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,
∴y1<y2,所以④正确.
故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18、(﹣5,3)【详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).三、解答题(共66分)19、(1);(2)当销售单价为70元时,最大利润4500元;(3)销售单价定为元.【分析】(1)根据降价1元,销量增加5条,则降价元,销量增加件,即可得出关系式;(2)根据总利润=每条利润×销量,可建立函数关系式,再根据二次函数最值的求法得到最大利润;(3)先求出利润为(3800+200)元时的售价,取符合题意的价格即可.【详解】解:(1)由题意可得:整理得(2)当时,即当销售单价为70元时,最大利润4500元.(3)由题意,得:解得:,抛物线开口向下,对称轴为直线当时,符合该网店要求而为了让顾客得到最大实惠,故当销售单价定为元时,即符合网店要求,又能让顾客得到最大实惠.【点睛】本题考查了二次函数的应用,熟练掌握销售问题的等量关系建立二次函数模型是解题的关键.20、(1),;(2);(3)【解析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN时,即5-t=t,②当BM=NM=5-t时,过点M作ME⊥OB,因为AO⊥BO,所以ME∥AO,可得:即可解答;③当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=BM=(5-t),易证△BFE∽△BOA,所以即可解答;(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,设出点P坐标,易证△BGO∽△BPD,所以,即可解答.【详解】解:解:(1)∵抛物线过点B(-3,0)和C(4,0),
∴,
解得:;(2)∵B(-3,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=BN=t,又因为AO⊥BO,所以ME∥AO,所以,即,解得:t=;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=BM=(5-t),易证△BFE∽△BOA,所以,即,解得:t=.(3)设BP交y轴于点G,过点G作GH⊥AB于点H,因为BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,设P(m,-m2+m+4),因为GO∥PD,∴△BGO∽△BPD,∴,即,解得:m1=,m2=-3(点P在第一象限,所以不符合题意,舍去),m1=时,-m2+m+4=故点P的坐标为【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.21、(1)点A的铅直高度是2019mm;(2)A,E两点的水平距离约为3529mm.【分析】(1)如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M,利用求出AH的长,利用求出DM的长,从而求出AG的长,即点的铅直高度;(2)利用求出CH的长,再利用求出EM,从而求出A,E两点的水平距离.【详解】如图,作AG⊥EF,CH⊥AG,DM⊥EF,垂足分别为点G,H,M.(1)在Rt△ACH中,∠ACH=30°,AC=AB﹣BC=1700∴∴AH=850在Rt△DEM中,∴DM≈357∴AG=AH+CD+DM≈850+812+357=2019∴点A的铅直高度是2019mm.
(2)∵在Rt△ACH中,,∴CH≈1471∵在Rt△DEM中,,∴EM≈2058∴EG=EM+CH≈3529
∴A,E两点的水平距离约为3529mm.【点睛】本题考查了三角函数的应用,利用特殊三角函数的值求解线段长是解题的关键.22、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②PB=PC;③BP=BC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.23、∠P=50°【解析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理经济法复习时间安排指南试题及答案
- 房地产土石方运输协议
- 园林景观设计在市政中的应用试题及答案
- 城市广场设计与功能分析试题及答案
- 2024年太阳能热发电系统投资申请报告代可行性研究报告
- 提升复习效率市政试题及答案技巧
- 板栗钓鱼测试题及答案
- 会议室材料采购协议
- 深度复习中级经济师试题及答案
- 工程经济考试相关知识的重点试题及答案
- 2025年-重庆市建筑安全员B证考试题库附答案
- 结肠癌科普知识
- 2025-2031年中国核电用钛合金管道行业发展前景预测及投资方向研究报告
- 政府项目投资合作框架协议书范本
- 具身智能项目建设规划方案(参考模板)
- 科学小实验手摇发电机
- 三类人员安全教育
- 2024电能存储系统用锂蓄电池和电池组安全要求
- DB14-T 3225-2025 煤矸石生态回填环境保护技术规范
- 劳务外包服务投标方案(技术标)
- DB33T 1209-2020 无机轻集料保温板外墙保温系统应用技术规程
评论
0/150
提交评论