2022年重庆市南开中学数学九年级上册期末质量跟踪监视模拟试题含解析_第1页
2022年重庆市南开中学数学九年级上册期末质量跟踪监视模拟试题含解析_第2页
2022年重庆市南开中学数学九年级上册期末质量跟踪监视模拟试题含解析_第3页
2022年重庆市南开中学数学九年级上册期末质量跟踪监视模拟试题含解析_第4页
2022年重庆市南开中学数学九年级上册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为()A.80° B.90° C.100° D.110°2.将一副学生常用的三角板如下图摆放在一起,组成一个四边形,连接,则的值为()A. B. C. D.3.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A. B. C. D.4.正五边形的每个内角度数为()A.36° B.72° C.108° D.120°5.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.如图所示,是的中线,是上一点,,的延长线交于,()A. B. C. D.7.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.8.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.9.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另-个转出蓝色即可配成紫色,则可配成紫色的概率是()转盘一转盘二A. B. C. D.10.若关于的一元二次方程的一个根是,则的值是()A.2011 B.2015 C.2019 D.202011.的相反数是()A. B. C.2019 D.-201912.下列方程中,是一元二次方程的是()A. B.C. D.二、填空题(每题4分,共24分)13.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,1.已知这组数据的平均数是10,那么这组数据的方差是_____.14.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.15.比较大小:________.(填“,或”)16.若、是方程的两个实数根,代数式的值是______.17.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=_____.18.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.三、解答题(共78分)19.(8分)已知抛物线经过点和点.求抛物线的解析式;求抛物线与轴的交点的坐标(注:点在点的左边);求的面积.20.(8分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).21.(8分)已知反比例函数的图象经过点(2,﹣2).(I)求此反比例函数的解析式;(II)当y≥2时,求x的取值范围.22.(10分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.23.(10分)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?24.(10分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?25.(12分)超市销售某种儿童玩具,该玩具的进价为100元/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。设上涨后的销售单价为x元,每天售出y件.(1)请写出y与x之间的函数表达式并写出x的取值范围;(2)设超市每天销售这种玩具可获利w元,当x为多少元时w最大,最大为名少元?26.方方驾驶小汽车匀速地从地行驶到地,行驶里程为千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米/小时),且全程速度限定为不超过千米/小时.(1)求关于的函数表达式,并写出自变量的取值范围;(2)方方上午点驾驶小汽车从地出发;①方方需在当天点分至点(含点分和点)间到达地,求小汽车行驶速度的范围;②方方能否在当天点分前到达地?说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据平行线的性质求出∠AOD,根据等腰三角形的性质求出∠OAD,根据圆内接四边形的性质计算即可.【详解】∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°-∠OAD=110°,故选:D.【点睛】本题考查的是圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.2、B【分析】设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,设AB=2,则易求出CF=,由△CEF∽△AEB,可得,于是设EF=,则,然后利用等腰直角三角形的性质可依次用x的代数式表示出CF、CD、DE、DG、EG的长,进而可得CG的长,然后利用正切的定义计算即得答案.【详解】解:设AC、BD交于点E,过点C作CF⊥BD于点F,过点E作EG⊥CD于点G,则CF∥AB,△CDF和△DEG都是等腰直角三角形,∴△CEF∽△AEB,设AB=2,∵∠ADB=30°,∴BD=,∵∠BDC=∠CBD=45°,CF⊥BD,∴CF=DF=BF==,∴,设EF=,则,∴,∴,,∴,∴,∴.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.3、B【分析】根据概率公式直接解答即可.【详解】∵共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,∴他选择的景点恰为丝路花雨的概率为;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.4、C【解析】根据多边形内角和公式:,得出正五边形的内角和,再根据正五边形的性质:五个角的角度都相等,即可得出每个内角的度数.【详解】解:故选:C【点睛】本题考查的是多边形的内角和公式以及正五边形的性质,掌握这两个知识点是解题的关键.5、B【解析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.6、D【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到,据此计算得到答案.【详解】解:作DH∥BF交AC于H,

∵AD是△ABC的中线,

∴BD=DC,

∴FH=HC,∴FC=2FH,

∵DH∥BF,,,∴AF:FC=1:6,∴AF:AC=1:7,

故选:D.【点睛】本题考查平行线分线段成比例定理,作出平行辅助线,灵活运用定理、找准比例关系是解题的关键.7、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.8、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.9、B【分析】将转盘一平均分成3份,即将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,再利用列表法列出所有等可能事件,根据题意求概率即可.【详解】解:将转盘一标“蓝”的部分平均分成两部分,分别记为蓝、蓝,即转盘-平均分成三等份,列表如下:红红蓝黄红(红,红)(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)蓝(蓝,红)(蓝,红)(蓝,蓝)(蓝,黄)由表格可知,共有12种等可能的结果,其中能配成紫色的结果有5种,所以可配成紫色的概率是.故选B.【点睛】本题考查了概率,用列表法求概率时,必须是等可能事件,这是本题的易错点,熟练掌握列表法是解题的关键.10、C【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【详解】∵关于x的一元二次方程的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.11、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.12、C【分析】根据一元二次方程的定义求解,一元二次方程必须满足两个条件:①未知数的最高次数是2;②二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、是分式方程,故A不符合题意;

B、是二元二次方程,故B不符合题意;

C、是一元二次方程,故C符合题意;

D、是二元二次方程,故D不符合题意;

故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是(且a≠1).特别要注意a≠1的条件,这是在做题过程中容易忽视的知识点.二、填空题(每题4分,共24分)13、2【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.15、<【分析】比较与的值即可.【详解】∵,,,∴,故答案为:.【点睛】此题考查三角函数值,熟记特殊角度的三角函数值是解题的关键.16、1【分析】先对所求代数式进行变形为,然后将代入方程中求出的值,根据根与系数的关系求出的值,最后代入即可求解.【详解】∵是方程的根∴∴∵、是方程的两个实数根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程的根,根与系数的关系,掌握根与系数的关系,能够对所求代数式进行适当变形是解题的关键.17、7.1【解析】根据平行线分线段成比例定理得到比例式,求出DF,根据BF=BD+DF,计算即可得答案.【详解】∵a∥b∥c,∴ACCE=BDDF,即46解得DF=4.1,∴BF=BD+DF=3+4.1=7.1,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18、k≤5且k≠1.【解析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.三、解答题(共78分)19、(1);(2)点,点;(3)6.【分析】(1)将点和点代入即可求出解析式;(2)令y=0,解出的x的值即可得到点A、B的坐标;(3)根据点坐标求得,代入面积公式计算即可.【详解】(1)把点和点代入得解得所以抛物线的解析式为:;(2)把代入,得,解得,点在点的左边,点,点;(3)连接AC、BC,由题意得,.【点睛】此题考查待定系数法求二次函数的解析式,二次函数图形与一元二次方程的关系,利用点坐标求图象中三角形的面积.20、(1)x1=-3,x2=1;(2)x1=-1,x2=2【分析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程.【详解】(1)解一:(x+3)(x﹣1)=0解得:x1=﹣3,x2=1解二:a=1,b=2,c=﹣3x=解得:x=即x1=﹣3,x2=1.(2)x(x+1)﹣2(x+1)=0(x+1)(x﹣2)=0x1=﹣1,x2=2点睛:本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式.21、(I)y=﹣;(II)当y≥2时,﹣2≤x<1【分析】(I)利用待定系数法可得反比例函数解析式;(II)利用反比例函数的解析式不求出的点,利用函数图象即可求得答案.【详解】(I)设解析式为y=,把点(2,﹣2)代入解析式得,﹣2=,解得:k=﹣4∴反比例函数的解析式y=﹣;(II)当y=2时,x=﹣2,如图,所以当y≥2时,﹣2≤x<1.【点睛】本题主要考查了反比例函数的性质以及待定系数法求反比例函数解析式,关键是正确求出函数解析式,画出函数图象的草图.22、详见解析【分析】利用平行四边形的性质即可证明.【详解】证明:∵四边形ABCD是平行四边形,∴∠∠,∥,∴∠∠.∴△∽△【点睛】本题主要考查相似三角形的判定,掌握平行四边形的性质是解题的关键.23、(1)见解析(2)P(积为奇数)=【分析】(1)用树状图列举出2次不放回实验的所有可能情况即可;(2)看是奇数的情况占所有情况的多少即可.【详解】(1)(2)P(积为奇数)=24、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块【分析】(1)根据每块瓷砖的面积S=楼体外表的总面积÷所需的瓷砖块数n块,求出即可;(2)设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x块,再用n=625000求出即可.【详解】解;(1)∵每块瓷砖的面积楼体外表的总面积÷所需的瓷砖块数块,由此可得出与的函数关系式是:(2)当时,设用灰瓷砖块,则白瓷砖、蓝瓷砖分别为块、块,依据题意得出:,解得:,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块.【点睛】此题主要考查了反比例函数的应用,根据已知得出瓷砖总块数进而得出等式方程是解题关键.25、(1);(2)当x为160/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论