




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,的面积为12,点D、E分别是边AB、AC的中点,则的面积为()A.6 B.5 C.4 D.32.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°3.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A. B. C. D.4.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.5.某超市一天的收入约为450000元,将450000用科学记数法表示为()A.4.5×106 B.45×105 C.4.5×105 D.0.45×1066.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.37.在Rt△ABC中,∠C=90°,、、所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A. B.3 C. D.8.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸9.某商务酒店客房有间供客户居住.当每间房每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出元的费用.当房价定为多少元时,酒店当天的利润为元?设房价定为元,根据题意,所列方程是()A. B.C. D.10.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法 B.列举法 C.从特殊到一般 D.反证法11.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为A.46° B.53° C.56° D.71°12.如图所示,已知圆心角,则圆周角的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点是矩形的对角线上一点,正方形的顶点在边上,则的值为__________.14.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.15.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_______米.16.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.17.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.18.在Rt△ABC中,∠C=90°,AC=6,BC=8(如图),点D是边AB上一点,把△ABC绕着点D旋转90°得到,边与边AB相交于点E,如果AD=BE,那么AD长为____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.20.(8分)如图,为正方形对角线上一点,以为圆心,长为半径的与相切于点.(1)求证:与相切.(2)若正方形的边长为1,求半径的长.21.(8分)已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.22.(10分)在学习概率的课堂上,老师提出的问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲同学的方案修改为只用2、3、5、7四张牌,抽取方式及规则不变,乙的方案公平吗?并说明理由.23.(10分)如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.24.(10分)先化简,再求值:,其中x=+2,y=-2.25.(12分)如图,在中,于点.若,求的值.26.如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′,若反比例函数的图像恰好经过A′B的中点D,求这个反比例函数的解析式.
参考答案一、选择题(每题4分,共48分)1、D【分析】先由点D、E分别是边AB、AC的中点,得DE∥BC,从而得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方及△ABC的面积为12,可得SADE=1.【详解】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,,∴△ADE∽△ABC,∴SADE:S△ABC=1:4∵△ABC的面积为12∴SADE=1.故选D.【点睛】本题考查了三角形中位线定理,相似三角形的判定与性质,熟练掌握形似三角形的判定方法与性质定理是解答本题的关键.2、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.3、B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为=,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.4、D【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.【详解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故选D.【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.5、C【分析】根据科学记数法的表示方法表示即可.【详解】将150000用科学记数法表示为1.5×2.故选:C.【点睛】本题考查科学记数法的表示,关键在于牢记科学记数法的表示方法.6、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.7、A【分析】根据锐角三角函数的定义,直接得出cotA=,即可得出答案.【详解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故选择:A.【点睛】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.8、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.9、D【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x元,根据题意,得故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.10、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.11、C【解析】试题分析:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°.∵∠ADB和∠ACB都是弧AB对的圆周角,∴∠ADB=∠ACB=56°.故选C.12、A【详解】是同弧所对的圆周角和圆心角,,因为圆心角∠BOC=100°,所以圆周角∠BAC=50°【点睛】本题考查圆周角和圆心角,解本题的关键是掌握同弧所对的圆周角和圆心角关系,然后根据题意来解答二、填空题(每题4分,共24分)13、【分析】先证明△AHE∽△CBA,得到HE与AH的倍数关系,则可知GF与AG的倍数关系,从而求解tan∠GAF的值.【详解】∵四边形是正方形,∴,∵∠AHE=∠ABC=90°,∠HAE=∠BCA,
∴△AHE∽△CBA,∴,即,设,则A,
∴,
∴.故答案为:.【点睛】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形.利用参数求解是解答本题的关键.14、3【分析】已知直线y=x+2与反比例函数y=的图象在第一象限交于点P,设点P的坐标为(m,m+2),根据OP=,列出关于m的等式,即可求出m,得出点P坐标,且点P在反比例函数图象上,所以点P满足反比例函数解析式,即可求出k值.【详解】∵直线y=x+2与反比例函数y=的图象在第一象限交于点P∴设点P的坐标为(m,m+2)∵OP=∴解得m1=1,m2=-3∵点P在第一象限∴m=1∴点P的坐标为(1,3)∵点P在反比例函数y=图象上∴解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.15、2【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【详解】解:∵DE∥AB,DF∥AC,
∴△DEF∽△ABC,
∴,
即,
∴AC=6×1.5=2米.
故答案为:2.【点睛】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.16、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.17、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.18、.【解析】在Rt△ABC中,
由旋转的性质,设AD=A′D=BE=x,则DE=2x-10,
∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,
∴∠A′=∠A,∠A′DE=∠C=90°,
∴∽△BCA,∴,∵=10-x,∴,∴x=,故答案为.三、解答题(共78分)19、(1)-4;(2)见解析;(3)点E的坐标为(﹣4,1).【分析】(1)根据一次函数图象上点的坐标特征求出点A的坐标,利用待定系数法求出k;
(2)先求出点D的坐标,求出∠ADB=45°,∠ODC=45°,从而得解;
(3)设出点E的坐标,根据三角形的面积公式解答.【详解】(1)设点B的坐标为(a,0),∵∠ABO=90°,AB=BO,∴点A的坐标为(a,﹣a),∵点A在直线y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即点A的坐标为(﹣2,2),∵点A在反比例函数y=上,∴k=﹣4;(2)∵点D与点O关于AB对称,∴点D的坐标为(﹣4,0)∴OD=4,∴DB=BA=2,则∠ADB=45°,∵直线y=﹣3x﹣4交y轴于C点,∴点C的坐标为(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)设点E的坐标为(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴﹣=1,∴点E的坐标为(﹣4,1).【点睛】本题考查的是反比例函数与几何的综合题,掌握待定系数法求反比例函数解析式是解题的关键.20、(1)见解析;(2)【分析】(1)根据正方形的性质可知,AC是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC的长,再根据等腰直角三角形的性质得出即可求出.【详解】解:(1)如图,连接,过点作于点,∵与相切,∴∵四边形是正方形,∴平分,∴,∴与相切.(2)∵四边形为正方形,∴,∴,∴,∴.又,∴,解得.【点睛】本题主要考查了正方形的性质和圆的切线的性质和判定,还运用了数量关系来证明圆的切线的方法.21、(1)证明见解析;(2)k≥.【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;
(2)把(0,-2)带入平移后的解析式,利用配方法得到k=(m+)²+,即可得出结果.【详解】(1)证:当y=0时x2-2mx+m2+m-1=0∵b2-4ac=(-2m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x2-2mx+m2+m-1=0有两个不相等的实数根∴二次函数y=x2-2mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为:y=x2-2mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k,∴k=m²+m+1=(m+)²+,∴k≥.【点睛】本题考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.22、(1)甲同学的方案不公平.理由见解析;(2)公平,理由见解析.【解析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.
(2)解题思路同上.【详解】(1)甲同学的方案不公平.理由如下:列表法,所有结果有12种,数字之和为奇数的有:8种,故小丽获胜的概率为:,则小芳获胜的概率为:,故此游戏两人获胜的概率不相同,即游戏规则不公平;(2)公平,理由如下:所有结果有12种,其中数字之和为奇数的有:6种,故小丽获胜的概率为:,则小芳获胜的概率为:,故此游戏两人获胜的概率相同,即他们的游戏规则公平.【点睛】本题考查树状图或列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上的完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)见解析;(2)图中阴影部分的面积为.【分析】(1)连接OC交DE于F,根据矩形的判定定理证出四边形CEOD是矩形,根据矩形的性质和等边对等角证出∠FCD=∠CDF,然后根据切线的性质可得∠OCG=90°,然后根据同角的余角相等即可证出结论;(2)根据题意,求出∠COD=30°,然后利用锐角三角函数求出CD和OD,然后根据扇形的面积公式和三角形的面积公式即可求出结论.【详解】证明:(1)连接OC交DE于F,∵CD⊥OA,CE⊥OB,∴∠CEO=∠AOB=∠CDO=90°,∴四边形CEOD是矩形,∴CF=DF=EF=OF,∠ECD=90°,∴∠FCD=∠CDF,∠ECF+∠FCD=90°,∵CG是⊙O的切线,∴∠OCG=90°,∴∠OCD+∠GCD=90°,∴∠ECF=∠GCD,∵∠DCG+∠CGD=90°,∴∠FCD=∠CGD,∴∠CGO=∠CDE;(2)由(1)知,∠CGD=∠CDE=60°,∴∠DCO=60°,∴∠COD=30°,∵OC=OA=4,∴CD=2,OD=2,∴图中阴影部分的面积=﹣2×2=π﹣2.【点睛】此题考查的是矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积,掌握矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废玻璃回收再生回收项目可行性研究报告
- 2025-2026学年人教版(2024)小学数学二年级上册期中(第1-3单元)核心知识点归纳
- 有机硅耐热漆项目可行性研究报告
- 防汛知识培训宣传
- 装饰施工工装合同
- DB65T 4119-2018 绵羊细管冷冻精液操作规程
- 消费优惠市场分析研究
- 星际尘埃对空间材料性能的影响-洞察及研究
- 窗帘制作安装合同正式版范本2篇
- 培训班租赁合同3篇
- 起重机安全应急预案
- 跨境贸易背景下非遗工艺产业的机遇与挑战
- 老年病贫血护理
- 第五单元晚清时期的内忧外患与救亡图存(单元复习课件)-高一历史(中外历史纲要上册)
- 2025年农村饮水安全项目社会稳定风险监测与评估报告
- 2025至2030中国无线电频率行业发展趋势分析与未来投资战略咨询研究报告
- 新人教版1年级上册数学全册教学课件(新版教材)
- 比亚迪汽车车间管理制度
- 《烽火岁月中的木刻》教学课件-2024-2025学年浙人美版(2024)初中美术七年级上册
- 公司外出施工管理制度
- 分析包容型领导风格对团队绩效和员工创新绩效的作用
评论
0/150
提交评论