2023届北京市延庆县名校九年级数学上册期末调研模拟试题含解析_第1页
2023届北京市延庆县名校九年级数学上册期末调研模拟试题含解析_第2页
2023届北京市延庆县名校九年级数学上册期末调研模拟试题含解析_第3页
2023届北京市延庆县名校九年级数学上册期末调研模拟试题含解析_第4页
2023届北京市延庆县名校九年级数学上册期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5π B.12.5π C.20π D.25π2.若,则下列比例式中正确的是()A. B. C. D.3.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠14.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=05.如图,△ABC中∠A=60°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的三角形与△ABC不相似的是()A. B.C. D.6.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=07.在一个不透明的布袋中有红色、黑色的球共10个,它们除颜色外其余完全相同.小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,则口袋中黑球的个数很可能是()A.4 B.5 C.6 D.78.若|a+3|+|b﹣2|=0,则ab的值为()A.﹣6B.﹣9C.9D.69.若点在反比例函数上,则的值是()A. B. C. D.10.如图,矩形OABC的顶点A、C分别在x、y轴上,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E.若四边形ODBE的面积为9,则k的值为()A.2 B. C.3 D.11.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°12.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.二、填空题(每题4分,共24分)13.要使二次根式有意义,则的取值范围是________.14.如图,,与交于点,已知,,,那么线段的长为__________.15.若某人沿坡度i=3∶4的斜坡前进10m,则他比原来的位置升高了_________m.16.已知实数m,n满足,,且,则=.17.反比例函数的图象在一、三象限,则应满足_________________.18.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.三、解答题(共78分)19.(8分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).20.(8分)若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:,.我们把它们称为根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:AB=====请你参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,直接写出b2-4ac的值;(2)当△ABC为等腰三角形,且∠ACB=120°时,直接写出b2-4ac的值;(3)设抛物线y=x2+mx+5与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=120°.21.(8分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比1010%25mn30%a20%1515%根据图表提供的信息,回答下列问题:(1)填空:______,________;(2)请补全频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?22.(10分)如图,在平面直角坐标系中,已知的三个项点的坐标分别是、、.(1)在轴左侧画,使其与关于点位似,点、、分别于、、对应,且相似比为;(2)的面积为_______.23.(10分)某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:(1)填空:;;(2)观察第(1)题的计算结果回答:一定等于;(3)根据(1)、(2)的计算结果进行分析总结的规律,计算:24.(10分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.(1)求二次函数G1的解析式;(2)当﹣1<x<2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是.(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.25.(12分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为.26.在“美丽乡村”建设中,某村施工人员想利用如图所示的直角墙角,计划再用30米长的篱笆围成一个矩形花园,要求把位于图中点处的一颗景观树圈在花园内,且景观树与篱笆的距离不小2米.已知点到墙体、的距离分别是8米、16米,如果、所在两面墙体均足够长,求符合要求的矩形花园面积的最大值.

参考答案一、选择题(每题4分,共48分)1、D【分析】首先根据圆周角的度数求得圆心角的度数,然后代入扇形的面积公式求解即可.【详解】解:∵∠ACB=45°,∴∠AOB=90°,∵半径为10,∴扇形AOB的面积为:=25π,故选:D.【点睛】考查了圆周角定理及扇形的面积公式,解题的关键是牢记扇形的面积公式并正确的运算.2、C【分析】根据比例的基本性质直接判断即可.【详解】由,根据比例性质,两边同时除以6,可得到,故选C.【点睛】本题考查比例的基本性质,掌握性质是解题关键.3、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.4、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.5、A【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意,B、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意,C、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,D、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,故选:A.【点睛】本题考查的是相似三角形的判定,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟知相似三角形的判定定理是解答此题的关键.6、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7、C【分析】根据题意得出摸出黑球的频率,继而根据频数=总数×频率计算即可.【详解】∵小娟通过多次摸球试验后发现其中摸到黑球的频率稳定在60%附近,∴口袋中黑球的个数可能是10×60%=6个.故选:C.【点睛】本题主要考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.8、C【解析】根据非负数的性质可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以ab=(﹣3)2=9,故选C.点睛:本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.9、C【分析】将点(-2,-6)代入,即可计算出k的值.【详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.10、C【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、▱OABC的面积与|k|的关系,列出等式求出k值.【详解】解:由题意得:E、M、D位于反比例函数图象上,则,,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S▱ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S▱ONMG=4|k|,由于函数图象在第一象限,∴k>0,则,∴k=1.故选:C.【点睛】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.11、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.12、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.二、填空题(每题4分,共24分)13、x≥1【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,,解得,x≥1,故答案为:x≥1.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.14、【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA:OD=AB:CD,然后利用比例性质计算OA的长.【详解】∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA=.故答案为.【点睛】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15、1.【详解】解:如图:由题意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案为:1【点睛】本题考查解直角三角形的应用-坡度坡角问题.16、.【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.∴原式===,故答案为.考点:根与系数的关系.17、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.18、10%【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.【详解】解:设平均每次降价的百分率是x,根据题意得:60(1-x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题(共78分)19、(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.20、(1)4;(2);(3)抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由90°变为120°.【分析】(1)根据上述结论及直角三角形的性质列出等式,计算出即可;(2)根据上述结论及含120°的等腰三角形的边角关系,列出方程,解出方程即可;(3)根据(1)中结论,计算出m的值,设出平移后的函数解析式,根据(2)中结论,列出等量关系即可解出.【详解】解:(1)由y=ax2+bx+c(a≠0)可知顶点C∵,∴当△ABC为等腰直角三角形时,根据直角三角形斜边上的中线等于斜边的一半可知:=,化简得故答案为:4(2)由y=ax2+bx+c(a≠0)可知顶点C如图,过点C作CD⊥AB交AB于点D,∵∠ACB=120°,∴∠A=30°∵tan30°=,即,又因为,∴化简得故答案为:(3)∵因为向左或向右平移时的度数不变,所以只需将抛物线向上或向下平移使,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线的解析式为:,平移后,所以,抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由变为.【点睛】本题考查二次函数与几何的综合应用题,难度适中,关键是能够根据特殊三角形的性质列出关系式.21、(1)25%,30;(2)见解析;(3)1800人【分析】(1)根据百分比之和等于1求出m的值,由0≤x<3的频数及频率求出总人数,总人数乘以对应的百分比求出n的值;(2)总人数乘以对应的百分比求出a的值,从而补全直方图;(3)总人数乘以对应的百分比可得答案.【详解】(1)抽取的学生人数为:(人);∴,.故答案为:25%,30;(2),补全频数分布直方图如解图所示;(3)(人),答:估计学生每周阅读时间x(时)在范围内的人数有1800人.【点睛】错因分析:第(1)问,①未搞清楚各组百分比之和等于1;②各组频数之和等于抽取的样本总数;第(2)问,不会利用各组的频数等于样本总数乘各组所占的百分比来计算,第(3)问,样本估计总体时,忽略了要用总人数乘时间段“6~9和9~12”这两个时间段所占的百分比之和.22、(1)见解析;(2)1.【分析】(1)根据位似的性质得到点、、的对应点D(-1,-1),E(-2,0),F(-2,2),连线即可得到位似图形;(2)利用底乘高的面积公式计算即可.【详解】(1)如图,(2)由图可知:E(-2,0),F(-2,2);∴EF=2,∴S△DEF,故答案为:1.【点睛】此题考查位似的性质,位似图形的画法,坐标系中三角形面积的求法,熟练掌握位似图形的关系是解题的关键.23、(1)3,1;(2);(3).【分析】(1)依据被开方数即可计算得到结果;(2)观察计算结果不一定等于a,应根据a的值来确定答案;(3)原式利用得出规律计算即可得到结果.【详解】(1),;故答案为:3,1.(2)=|a|,故答案为:|a|;(3)∵a<b,∴a−b<0,∴=|a-b|=b−a.【点睛】此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.24、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为y=﹣x2+2x+3;(2)将解析式化为顶点式,即y=﹣(x﹣1)2+4,当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为y=﹣x2+2x+3;(2)因为y=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论