




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在正方形中,分别为的中点,交于点,连接,则()A.1:8 B.2:15 C.3:20 D.1:62.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π3.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种4.若反比例函数的图象在每一个信息内的值随的增大而增大,则关于的函数的图象经过()A.第一、三象限 B.第二、四象限C.第一、三、四象限 D.第一、二、四象限5.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大6.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④7.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.328.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,则k的取值范围是()A.k≤ B.k< C.k≥ D.k>9.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是()A. B. C. D.10.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有()A.1个 B.2个 C.3个 D.4个11.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.12.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖二、填空题(每题4分,共24分)13.若关于的一元二次方程有实数根,则的取值范围是__________.14.如图,四边形ABCD、AEFG都是正方形,且∠BAE=45°,连接BE并延长交DG于点H,若AB=4,AE=,则线段BH的长是_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.17.已知,若是一元二次方程的两个实数根,则的值是___________.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,若∠CDB=30°,⊙O的半径为5cm则圆心O到弦CD的距离为_____.三、解答题(共78分)19.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,交y轴于点C,已知A(﹣1,0)对称轴是直线x=1.(1)求抛物线的解析式及点C的坐标;(2)动点M从点O出发,以每秒2个单位长度的速度向点B运动,过M作x轴的垂线交抛物线于点N,交线段BC于点Q.设运动时间为t(t>0)秒.①若AOC与BMN相似,请求出t的值;②BOQ能否为等腰三角形?若能,求出t的值.20.(8分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.21.(8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.22.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.23.(10分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.24.(10分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.25.(12分)如图,已知抛物线y=﹣x2+bx+c的图象经过(1,0),(0,3)两点.(1)求b,c的值;(2)写出当y>0时,x的取值范围.26.解一元二次方程:(1)(2)
参考答案一、选择题(每题4分,共48分)1、A【分析】延长交延长线于点,可证,,,【详解】解:延长交延长线于点在与中故选A【点睛】本题考查了相似三角形的性质.2、B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.3、B【解析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,,解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,,解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,,解得:x=32.4cm,y=21.6cm,x+y=32.4+21.6=54cm>45cm,故不成立;故只有一种截法.故选B.4、D【分析】通过反比例函数的性质可得出m的取值范围,然后根据一次函数的性质可确定一次函数图象经过的象限.【详解】解:∵反比例函数的图象在每一个信息内的值随的增大而增大∴∴∴∴关于的函数的图象不经过第三象限.故选:D.【点睛】本题考查的知识点是反比例函数的性质、一次函数的图象与系数的关系、一次函数的性质,掌握以上知识点是解此题的关键.5、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.6、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.7、D【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.8、D【解析】根据题意可以得到1-3k<0,从而可以求得k的取值范围,本题得以解决.【详解】∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,∴1-3k<0,解得,k>,故选D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.9、B【解析】根据中心对称图形的概念逐一判断即可.【详解】A.不是中心对称图形,故该选项不符合题意,B.是中心对称图形,符合题意,C.不是中心对称图形,故该选项不符合题意,D.不是中心对称图形,故该选项不符合题意,故选:B.【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【解析】试题分析:根据图象可知:,则;图象与x轴有两个不同的交点,则;函数的对称轴小于1,即,则;根据图象可知:当x=1时,,即;故本题选B.11、A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是.故选A.12、A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.二、填空题(每题4分,共24分)13、【分析】一元二次方程有实数根,即【详解】解:一元二次方程有实数根解得【点睛】本题考查与系数的关系.14、【分析】连结GE交AD于点N,连结DE,由于∠BAE=45°,AF与EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出,则,解着利用计算出HE,所以BH=BE+HE.【详解】解:连结GE交AD于点N,连结DE,如图,∵∠BAE=45°,∴AF与EG互相垂直平分,且AF在AD上,∵,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴,∵,∴,∴.故答案是:.【点睛】本题考查了正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算.15、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.16、【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是.【点睛】本题考查了列举法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本要求为两小边之和大于最大边.17、6【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.【详解】∵,故a-b=1∵是一元二次方程的两个实数根,∴a+b=-5,ab=k,∴=1即25-4k=1,解得k=6,故填:6.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知因式分解、根与系数的关系运用.18、2.5cm.【分析】根据圆周角定理得到∠COB=2∠CDB=60°,然后根据含30度的直角三角形三边的关系求出OE即可.【详解】∵CD⊥AB,∴∠OEC=90°,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=×5=2.5,即圆心O到弦CD的距离为2.5cm.故答案为2.5cm.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题(共78分)19、(1);;(2)①t=1;②当秒或秒时,△BOQ为等腰三角形.【分析】(1)将A、B点的坐标代入y=﹣x2+bx+c中,即可求解;(2)①△AOC与△BMN相似,则或,即可求解;②分OQ=BQ,BO=BQ,OQ=OB三种情况,分别求解即可;【详解】(1)∵A(﹣1,0),函数对称轴是直线x=1,∴,把A、B两点代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为,∴C点的坐标为.(3)①如下图,,△AOC与△BMN相似,则或,即或,解得或或3或1(舍去,,3),故t=1.②∵,轴,∴,∵△BOQ为等腰三角形,∴分三种情况讨论:第一种:当OQ=BQ时,∵,∴OM=MB,∴,∴;第二种:当BO=BQ时,在Rt△BMQ中,∵,∴,即,∴;第三种:当OQ=OB时,则点Q、C重合,此时t=0,而,故不符合题意;综上所述,当秒或秒时,△BOQ为等腰三角形.【点睛】本题主要考查了二次函数的综合,准确分析求解是做题的关键.20、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD的面积转化为△BCD和△BCE的面积之和,△BDE和△CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,则BE=CE=BC,证出△ABE是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,进而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=•AC•BC=××1=,S△ACD═•AC•AD=××3=,∴S四边形ABCD=S△ABC+S△ACD=2,故答案为:2;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根据勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=•BH•DE=×12×10=60,S△CED=•CD•CE=×6×8=24,∵△BCE≌△BAD,∴S四边形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,如图③所示:则BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,设AB=x,则AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合题意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面积=AD×CF=××3=.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.21、(1)见解析(2)【分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x-2,由在Rt△ABC中,,可得方程:,解此方程即可求得CB的长,继而求得CE的长.【详解】解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°∴AC⊥BC∵DC=CB∴AD=AB∴∠B=∠D(2)设BC=x,则AC=x-2,在Rt△ABC中,,∴,解得:(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E∴CD=CE∵CD=CB,∴CE=CB=.22、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)详见解析;(2);(3)【分析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD=90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM=60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,根据OM=OE=1,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°;(3)解:连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,∵的半径为1∴OM=OE=1,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 倾角仪项目投资可行性研究分析报告(2024-2030版)
- 架子合同协议书范文大全
- 2025年有光纯涤纶缝纫线项目投资可行性研究分析报告
- 汽修合同协议书模板范本
- 车款合同终止协议书模板
- 树木修剪合同协议书模板
- 2025年海南电机驱动专用芯片项目可行性研究报告
- 2025年音响设备及器材项目可行性研究报告
- 中国建筑股份有限公司-企业报告(业主版)
- 传统文化商业计划书
- DLT5155-2016 220kV~1000kV变电站站用电设计技术规程
- 质量保修卡格式范文
- 2024年汽车驾驶员(技师)证考试题库附答案
- 辛亥革命胜利的历史意义及其局限性
- 化学高考考前指导讲座
- 新疆维吾尔自治区2024年普通高考第三次适应性检测(三模)英语试卷(含答案详解)
- 2023-2024学年全国初中一年级下历史人教版期末试卷(含答案解析)
- 2024京东代运营服务合同范本
- 审计质量影响因素的实证分析
- 山东省青岛市即墨市2024年中考适应性考试数学试题含解析
- 海上风电柔性直流输电系统先进控制技术分析报告
评论
0/150
提交评论