2022年中考数学试题题分项汇编:专题11 平行线与三角形_第1页
2022年中考数学试题题分项汇编:专题11 平行线与三角形_第2页
2022年中考数学试题题分项汇编:专题11 平行线与三角形_第3页
2022年中考数学试题题分项汇编:专题11 平行线与三角形_第4页
2022年中考数学试题题分项汇编:专题11 平行线与三角形_第5页
已阅读5页,还剩81页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题11平行线与三角形一.选择题1.(2022·湖北宜昌·中考真题)如图,在中,分别以点和点为圆心,大于长为半径画弧,两弧相交于点,.作直线,交于点,交于点,连接.若,,,则的周长为(

)A.25 B.22 C.19 D.18【答案】C【分析】由垂直平分线的性质可得BD=CD,由△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC得到答案.【详解】解:由作图的过程可知,DE是BC的垂直平分线,∴BD=CD,∵,,∴△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC=19.故选:C【点睛】此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.2.(2022·浙江台州·中考真题)如图,点在的边上,点在射线上(不与点,重合),连接,.下列命题中,假命题是(

)A.若,,则 B.若,,则C.若,,则 D.若,,则【答案】D【分析】根据等腰三角形三线合一的性质证明PD是否是BC的垂直平分线,判断即可.【详解】因为AB=AC,且AD⊥BC,得AP是BC的垂直平分线,所以PB=PC,则A是真命题;因为PB=PC,且AD⊥BC,得AP是BC的垂直平分线,所以AB=AC,则B是真命题;因为AB=AC,且∠1=∠2,得AP是BC的垂直平分线,所以PB=PC,则C是真命题;因为PB=PC,△BCP是等腰三角形,∠1=∠2,不能判断AP是BC的垂直平分线,所以AB和AC不一定相等,则D是假命题.故选:D.【点睛】本题主要考查了等腰三角形的性质和判定,掌握性质定理是解题的关键.3.(2022·江苏宿迁·中考真题)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是(

)A.8cm B.13cm C.8cm或13cm D.11cm或13cm【答案】D【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时,∵3+3>5,∴3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm),当5是腰时,∵3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm),则三角形的周长为11cm或13cm.故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4.(2022·浙江杭州·中考真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则(

)A.线段CD是ABC的AC边上的高线 B.线段CD是ABC的AB边上的高线C.线段AD是ABC的BC边上的高线 D.线段AD是ABC的AC边上的高线【答案】B【分析】根据高线的定义注意判断即可.【详解】∵线段CD是ABC的AB边上的高线,∴A错误,不符合题意;∵线段CD是ABC的AB边上的高线,∴B正确,符合题意;∵线段AD是ACD的CD边上的高线,∴C错误,不符合题意;∵线段AD是ACD的CD边上的高线,∴D错误,不符合题意;故选B.【点睛】本题考查了三角形高线的理解,熟练掌握三角形高线的相关知识是解题的关键.5.(2022·湖南邵阳·中考真题)下列长度的三条线段能首尾相接构成三角形的是(

)A.,, B.,,C.,, D.,,【答案】B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.6.(2022·云南·中考真题)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOEFOE,你认为要添加的那个条件是(

)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【答案】D【分析】根据OB平分∠AOC得∠AOB=∠BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB平分∠AOC∴∠AOB=∠BOC当△DOE≌△FOE时,可得以下结论:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD与OE不是△DOE≌△FOE的对应边,A不正确;B答案中OE与OF不是△DOE≌△FOE的对应边,B不正确;C答案中,∠ODE与∠OED不是△DOE≌△FOE的对应角,C不正确;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正确.故选:D.【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.7.(2022·浙江湖州·中考真题)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是(

)A.12 B.9 C.6 D.【答案】B【分析】根据三线合一可得,根据垂直平分线的性质可得,进而根据∠EBC=45°,可得为等腰直角三角形,根据斜边上的中线等于斜边的一半可得,然后根据三角形面积公式即可求解.【详解】解:AB=AC,AD是△ABC的角平分线,,,∠EBC=45°,,为等腰直角三角形,,,则△EBC的面积是.故选B.【点睛】本题考查了等腰三角形的性质与判定,垂直平分线的性质,直角三角形中斜边上的中线等于斜边的一半,掌握等腰三角形的性质与判定是解题的关键.8.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是(

)A. B. C. D.【答案】C【分析】根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.【详解】A..根据SSS一定符合要求;B..根据SAS一定符合要求;C..不一定符合要求;D..根据ASA一定符合要求.故选:C.【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.9.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是(

)A. B. C. D.【答案】A【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【详解】解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:,,∠N′OQ=∠M′OB=30°,∴∠NON′=60°,,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′=.故选:A.【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.10.(2022·浙江金华·中考真题)如图,与相交于点O,,不添加辅助线,判定的依据是(

)A. B. C. D.【答案】B【分析】根据,,正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO和△DCO中,,∴,故B正确.故选:B.【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.11.(2022·浙江金华·中考真题)已知三角形的两边长分别为和,则第三边的长可以是(

)A. B. C. D.【答案】C【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x,∵角形的两边长分别为和,∴3cm<x<13cm,故选C.【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.12.(2022·安徽·中考真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是(

)A. B. C. D.【答案】B【分析】根据,可得,根据等边三角形的性质可求得△ABC中AB边上的高和△PAB中AB边上的高的值,当P在CO的延长线时,OP取得最小值,OP=CP-OC,过O作OE⊥BC,求得OC=,则可求解.【详解】解:如图,,,∴=====,∴,设△ABC中AB边上的高为,△PAB中AB边上的高为,则,,∴,∴,∵△ABC是等边三角形,∴,,∴点P在平行于AB,且到AB的距离等于的直线上,∴当点P在CO的延长线上时,OP取得最小值,过O作OE⊥BC于E,∴,∵O是等边△ABC的中心,OE⊥BC∴∠OCE=30°,CE=∴OC=2OE∵,∴,解得OE=,∴OC=,∴OP=CP-OC=.故选B.【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是解题的关键.13.(2022·四川南充·中考真题)如图,在中,的平分线交于点D,DE//AB,交于点E,于点F,,则下列结论错误的是(

)A. B. C. D.【答案】A【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.【详解】解:在中,的平分线交于点D,,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,

∴BF=CD=3,故A错误;故选:A.【点睛】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.14.(2022·四川德阳·中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是和.那么杨冲,李锐两家的直线距离不可能是(

)A. B. C. D.【答案】A【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a,则根据题意有:,即,当杨冲家、李锐家以及学校这三点共线时,或者,综上a的取值范围为:,据此可知杨冲家、李锐家的距离不可能是1km,故选:A.【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.15.(2022·山东泰安·中考真题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40° B.45° C.50° D.60°【答案】C【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.【详解】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.16.(2022·浙江绍兴·中考真题)如图,把一块三角板的直角顶点B放在直线上,,ACEF,则(

)A.30°B.45°C.60°D.75°【答案】C【分析】根据三角板的角度,可得,根据平行线的性质即可求解.【详解】解:,ACEF,故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.17.(2022·安徽·中考真题)两个矩形的位置如图所示,若,则(

)A. B. C. D.【答案】C【分析】用三角形外角性质得到∠3=∠1-90°=α-90°,用余角的定义得到∠2=90°-∠3=180°-α.【详解】解:如图,∠3=∠1-90°=α-90°,∠2=90°-∠3=180°-α.故选:C.【点睛】本题主要考查了矩形,三角形外角,余角,解决问题的关键是熟练掌握矩形的角的性质,三角形的外角性质,互为余角的定义.18.(2022·浙江杭州·中考真题)如图,已知,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=(

)A.10° B.20° C.30° D.40°【答案】C【分析】根据三角形外角的性质、平行线的性质进行求解即可;【详解】解:∵∠C+∠D=∠AEC,∴∠D=∠AEC-∠C=50°-20°=30°,∵,∴∠A=∠D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.19.(2022·湖南娄底·中考真题)一条古称在称物时的状态如图所示,已知,则(

)A. B. C. D.【答案】C【分析】如图,由平行线的性质可得从而可得答案.【详解】解:如图,由题意可得:,故选C【点睛】本题考查的是平行线的性质,邻补角的含义,掌握“两直线平行,内错角相等”是解本题的关键.20.(2022·江苏苏州·中考真题)如图,直线AB与CD相交于点O,,,则的度数是(

)A.25° B.30° C.40° D.50°【答案】D【分析】根据对顶角相等可得,之后根据,即可求出.【详解】解:由题可知,,.故选:D.【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.21.(2022·内蒙古通辽)如图,一束光线先后经平面镜,反射后,反射光线与平行,当时,的度数为(

)A. B. C. D.【答案】A【分析】根据题意得:∠ABM=∠OBC,∠BCO=∠DCN,然后平行线的性质可得∠BCD=70°,即可求解.【详解】解:根据题意得:∠ABM=∠OBC,∠BCO=∠DCN,∵∠ABM=35°,∴∠OBC=35°,∴∠ABC=180°-∠ABM-∠OBC=180°-35°-35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°-∠ABC=70°,∵∠BCO+∠BCD+∠DCN=180°,∠BCO=∠DCN,∴.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.22.(2022·河北)要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是(

)A.Ⅰ可行、Ⅱ不可行 B.Ⅰ不可行、Ⅱ可行 C.Ⅰ、Ⅱ都可行 D.Ⅰ、Ⅱ都不可行【答案】C【分析】用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误【详解】方案Ⅰ:如下图,即为所要测量的角∵∴∴故方案Ⅰ可行方案Ⅱ:如下图,即为所要测量的角在中:则:故方案Ⅱ可行故选:C【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明23.(2022·河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为(

)A.26° B.36° C.44° D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B.【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.24.(2022·湖北鄂州)如图,直线l1l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10° B.15° C.20° D.30°【答案】B【分析】由作图得为等腰三角形,可求出,由l1l2得,从而可得结论.【详解】解:由作图得,,∴为等腰三角形,∴∵∠BCA=150°,∴∵l1l2∴故选B【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出是解答本题的关键.25.(2022·湖南郴州)如图,直线,且直线a,b被直线c,d所截,则下列条件不能判定直线的是(

)A. B. C. D.【答案】C【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A、当时,;故A不符合题意;B、当时,;故B不符合题意;C、当时,;故C符合题意;D、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.26.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为(

)A. B. C. D.【答案】C【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由//可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∵∴∴∵//∴故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.27.(2022·北京)如图,利用工具测量角,则的大小为(

)A.30° B.60° C.120° D.150°【答案】A【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,.故选A.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.28.(2022·黑龙江)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是(

)A.2.5 B.2 C.3.5 D.3【答案】A【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD⊥BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S△EGD=3,然后证△EGP≌△FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.【详解】解:如图,连接DE,取AD的中点G,连接EG,∵AB=AC,AD平分与BC相交于点D,∴AD⊥BC,BD=CD,∴S△ABD==12,∵E是AB的中点,∴S△AED==6,∵G是AD的中点,∴S△EGD==3,∵E是AB的中点,G是AD的中点,∴EGBC,EG=BD=CD,∴∠EGP=∠FDP=90°,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠FPD,∴△EGP≌△FDP(AAS),∴GP=PD=1.5,∴GD=3,∵S△EGD==3,即,∴EG=2,在Rt△EGP中,由勾股定理,得PE==2.5,故选:A.【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.29.(2022·贵州遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为(

)A. B. C.1 D.2【答案】B【分析】根据题意求得,进而求得,进而等面积法即可求解.【详解】解:在中,,,,,设到的距离为,,,故选B.【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.30.(2022·广西)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知△ABC中,∠A=30°,AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为(

)A. B. C.或 D.或【答案】C【分析】分情况讨论,当△ABC是一个直角三角形时,当△AB1C是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.【详解】如图,当△ABC是一个直角三角形时,即,,;如图,当△AB1C是一个钝角三角形时,过点C作CD⊥AB1,,,,,,,,,,综上,满足已知条件的三角形的第三边长为或,故选:C.【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.31.(2022·山东烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70° B.北偏东75° C.南偏西70° D.南偏西20°【答案】A【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C=75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC的度数,即可解答.【详解】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.32.(2022·河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的(

)A.中线 B.中位线 C.高线 D.角平分线【答案】D【分析】根据折叠的性质可得,作出选择即可.【详解】解:如图,∵由折叠的性质可知,∴AD是的角平分线,故选:D.【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.33.(2022·广西贺州)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为(

)A. B. C. D.【答案】A【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【详解】解:∵Rt△ABC中,∠C=90°,∠B=56°,∴∠A=90°-∠B=90°-56°=34°;故选:A.【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.34.(2022·湖南永州)如图,在中,,,点为边的中点,,则的长为()A. B. C.2 D.4【答案】C【分析】根据三角形内角和定理可得∠A=30°,由直角三角形斜边上的中线的性质得出AC=2BD=4,再利用含30度角的直角三角形的性质求解即可.【详解】解:∵∠ABC=90°,∠C=60°,∴∠A=30°,∵点D为边AC的中点,BD=2∴AC=2BD=4,∴BC=,故选:C.【点睛】题目主要考查三角形内角和定理及直角三角形斜边上中线的性质,含30度角的直角三角形的性质等,理解题意,综合运用这些知识点是解题关键.35.(2022·湖南永州)下列多边形具有稳定性的是()A.B.C.D.【答案】D【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.36.(2022·广西玉林)请你量一量如图中边上的高的长度,下列最接近的是(

)A. B. C. D.【答案】D【分析】作出三角形的高,然后利用刻度尺量取即可.【详解】解:如图所示,过点A作AO⊥BC,用刻度尺直接量得AO更接近2cm,故选:D.【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键.37.(2022·黑龙江大庆)下列说法不正确的是(

)A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【答案】A【分析】利用等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案.【详解】解:A、设∠1、∠2为锐角,因为:∠1+∠2+∠3=180°,所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A选项不正确,符合题意;B、如图,在△ABC中,BE⊥AC,CD⊥AB,且BE=CD.∵BE⊥AC,CD⊥AB,∴∠CDB=∠BEC=90°,在Rt△BCD与Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.,故B选项正确,不符合题意;C、根据直角三角形的判定:有两个角互余的三角形是直角三角形,,故C选项正确,不符合题意;D、底和腰相等的等腰三角形是等边三角形,故D选项正确,不符合题意;故选:A.【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.38.(2022·广西梧州)如图,在中,是的角平分线,过点D分别作,垂足分别是点E,F,则下列结论错误的是(

)A. B. C. D.【答案】C【分析】根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.【详解】解:∵是的角平分线,∴,∴,故选项A、D结论正确,不符合题意;又是的角平分线,,∴,故选项B结论正确,不符合题意;由已知条件推不出,故选项C结论错误,符合题意;故选:C.【点睛】本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.39.(2022·四川乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连接PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为(

)A. B.3 C. D.4【答案】D【分析】当P与A重合时,点F与C重合,此时点M在N处,当点P与B重合时,如图,点M的运动轨迹是线段MN.求出CF的长即可解决问题.【详解】解:过点A作AD⊥BC于点D,连接CE,∵AB=AC,∴BD=DC=BC=1,∵AE=BC,∴AE=DC=1,∵AE∥BC,∴四边形AECD是矩形,∴S△ABC=BC×AD=×2×AD=2,∴AD=2,则CE=AD=2,当P与A重合时,点F与C重合,此时点M在CE的中点N处,当点P与B重合时,如图,点M的运动轨迹是线段MN.∵BC=2,CE=2,由勾股定理得BE=4,cos∠EBC=,即,∴BF=8,∵点N是CE的中点,点M是EF的中点,∴MN=BF=4,∴点M的运动路径长为4,故选:D.【点睛】本题考查点的轨迹、矩形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找点M的运动轨迹,学会利用起始位置和终止位置寻找轨迹,属于中考填空题中的压轴题.40.(2022·四川凉山)下列长度的三条线段能组成三角形的是(

)A.3,4,8 B.5,6,11 C.5,6,10 D.5,5,10【答案】C【分析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.【详解】解:A、,不能组成三角形,此项不符题意;B、,不能组成三角形,此项不符题意;C、,能组成三角形,此项符合题意;D、,不能组成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.41.(2022·四川成都)如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是(

)A. B. C. D.【答案】B【分析】根据三角形全等的判定做出选择即可.【详解】A、,不能判断,选项不符合题意;B、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B.【点睛】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键.42.(2022·山东聊城)如图,中,若,,根据图中尺规作图的痕迹推断,以下结论错误的是(

)A.B.C.D.【答案】D【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.【详解】∵,,∴∠B=180°-∠BAC-∠ACB=30°,A.由作图可知,平分,∴,故选项A正确,不符合题意;B.由作图可知,MQ是BC的垂直平分线,∴,∵,∴,故选项B正确,不符合题意;C.∵,,∴,∵,∴,故选项C正确,不符合题意;D.∵,,∴;故选项D错误,符合题意.故选:D.【点睛】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.43.(2022·海南)如图,直线,是等边三角形,顶点B在直线n上,直线m交于点E,交于点F,若,则的度数是(

)A. B. C. D.【答案】B【分析】根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.【详解】解:∵是等边三角形,∴∠A=60°,∵∠1=140°,∴∠AEF=∠1-∠A=80°,∴∠BEF=180°-∠AEF=100°,∵,∴∠2=∠BEF=100°.故选:B【点睛】本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.44.(2022·黑龙江齐齐哈尔)如图所示,直线a∥b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为(

)A.57°B.63°C.67°D.73°【答案】D【分析】根据等腰三角形的性质可求出,可得出,再根据平行线的性质可得结论.【详解】解:∵AC=BC,∴是等腰三角形,∵∴∴∵a∥b,∴故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出是解答本题的关键.45.(2022·湖北恩施)已知直线,将含30°角的直角三角板按图所示摆放.若,则(

)A.120° B.130° C.140° D.150°【答案】D【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.【详解】解:如图,根据题意得:∠5=30°,∵,∴∠3=∠1=120°,∴∠4=∠3=120°,∵∠2=∠4+∠5,∴∠2=120°+30°=150°.故选:D【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.二.填空题46.(2022·辽宁锦州)如图,在中,,点D为的中点,将绕点D逆时针旋转得到,当点A的对应点落在边上时,点在的延长线上,连接,若,则的面积是____________.【答案】【分析】先证明是等边三角形,再证明,再利用直角三角形角对应的边是斜边的一般分别求出和,再利用勾股定理求出,从而求得的面积.【详解】解:如下图所示,设与交于点O,连接和,∵点D为的中点,,∴,,是的角平分线,是,∴,∴∵,∴是等边三角形,∴,∵,∴,∴,∴,∴,∴∵∵,∴∴,,∴.【点睛】本题考查等腰三角形、等边三角形和直角三角形的性质,证明是等边三角形是解本题的关键.47.(2022·湖南郴州)如图.在中,,.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于长为半径作弧,在内两弧相交于点P;作射线AP交BC于点F,过点F作,垂足用G.若,则的周长等于________cm.【答案】8【分析】由角平分线的性质,得到,然后求出的周长即可.【详解】解:根据题意,在中,,,由角平分线的性质,得,∴的周长为:;故答案为:8【点睛】本题考查了角平分线的性质,解题的关键是掌握角平分线的性质.48.(2022·江苏常州)如图,在中,是中线的中点.若的面积是1,则的面积是______.【答案】2【分析】根据的面积的面积,的面积的面积计算出各部分三角形的面积.【详解】解:是边上的中线,为的中点,根据等底同高可知,的面积的面积,的面积的面积的面积,故答案为:2.【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.49.(2022·黑龙江哈尔滨)在中,为边上的高,,,则是___________度.【答案】40或80##80或40【分析】根据题意,由于类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:①高在三角形内部,如图所示:在中,为边上的高,,,,;②高在三角形边上,如图所示:可知,,故此种情况不存在,舍弃;③高在三角形外部,如图所示:在中,为边上的高,,,,;综上所述:或,故答案为:或.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.50.(2022·四川成都)如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.【答案】7【分析】连接EC,依据垂直平分线的性质得.由已知易得,在Rt△AEC中运用勾股定理求得AE,即可求得答案.【详解】解:由已知作图方法可得,是线段的垂直平分线,连接EC,如图,所以,所以,所以∠BEC=∠CEA=90°,因为,,所以,在中,,所以,因此的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.51.(2022·内蒙古通辽)在中,,有一个锐角为,,若点在直线上(不与点,重合),且,则的长为_______.【答案】或9或3【分析】分∠ABC=60、∠ABC=30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当∠ABC=60°时,则∠BAC=30°,∴,∴,当点P在线段AB上时,如图,∵,∴∠BPC=90°,即PC⊥AB,∴;当点P在AB的延长线上时,∵,∠PBC=∠PCB+∠CPB,∴∠CPB=30°,∴∠CPB=∠PCB,∴PB=BC=3,∴AP=AB+PB=9;当∠ABC=30°时,则∠BAC=60°,如图,∴,∵,∴∠APC=60°,∴∠ACP=60°,∴∠APC=∠PAC=∠ACP,∴△APC为等边三角形,∴PA=AC=3.综上所述,的长为或9或3.故答案为:或9或3【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.52.(2022·湖南岳阳)如图,在中,,于点,若,则______.【答案】3【分析】根据等腰三角形的性质可知是的中点,即可求出的长.【详解】解:∵,,∴,∵,∴,故答案为:3.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.53.(2022·江苏无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】

80

##【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,∴∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB=∠ECA,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS),∴∠EAC=∠DBC,∵∠DBC=20°,∴∠EAC=20°,∴∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∵△ACE≌△BCD∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,∴∠AFB=∠ACB=60°,∴A、B、C、F四个点在同一个圆上,∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,∴此时线段AF长度有最小值,在Rt△BCD中,BC=5,CD=3,∴BD=4,即AE=4,∴∠FDE=180°-90°-60°=30°,∵∠AFB=60°,∴∠FDE=∠FED=30°,∴FD=FE,过点F作FG⊥DE于点G,∴DG=GE=,∴FE=DF==,∴AF=AE-FE=4-,故答案为:80;4-.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.54.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则______.【答案】3【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.【详解】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x-1,在Rt∆AED中,,即,解得:x=4(负值已经舍去),∴x-1=3,故答案为:3.【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.55.(2022·黑龙江齐齐哈尔)在△ABC中,,,,则______________.【答案】或【分析】画出图形,分△ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当△ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H,∵∠B=45°,∴△ABH为等腰直角三角形,∴,在Rt△ACH中,由勾股定理可知:,∴.情况二:当△ABC为钝角三角形时,如图2所示:由情况一知:,,∴.故答案为:或.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将△ABC分成锐角三角形或钝角三角形分类讨论.56.(2022·贵州遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.【答案】【分析】过点作,且,证明,可得,当三点共线时,取得最小值,证明,即可求解.【详解】如图,过点作,且,连接,如图1所示,,又,,,,当三点共线时,取得最小值,此时如图2所示,在等腰直角三角形中,,,,,,,,,,设,,,,,,,,即取得最小值为,故答案为:.图1

图2【点睛】本题考查了等腰直角三角的性质,勾股定理,两点之间线段最短,转化线段是解题的关键.57.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为______【答案】135°##135度【分析】根据三角板及其摆放位置可得,求解即可.【详解】,,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.58.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.【答案】4【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.39.(2022·贵州遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径约为6400千米,弦,以为直径的圆的周长就是北纬28°纬线的长度;(参考数据:,,,)根据以上信息,北纬28°纬线的长度约为__________千米.【答案】33792【分析】根据平行线的性质可知,在中,利用锐角三角函数求出,即为以为直径的圆的半径,求出周长即可.【详解】解:如图,过点O作,垂足为D,根据题意,∵,∴,∵在中,,∴,∵,∴由垂径定理可知:,∴以为直径的圆的周长为,故答案为:33792.【点睛】本题考查解直角三角形,平行线的性质,解题的关键是熟练三角函数的含义与解直角三角形的方法.40.(2022·四川达州·中考真题)如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.【答案】##50度【分析】根据作图可知,,根据直角三角形两个锐角互余,可得,根据即可求解.【详解】解:∵在中,,,∴,由作图可知是的垂直平分线,,,,故答案为:.【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出是的垂直平分线,是解题的关键.41.(2022·湖北黄冈·中考真题)如图,已知,,请你添加一个条件________,使.【答案】或或【分析】先根据平行线的性质得到,然后根据全等三角形的判定方法添加条件.【详解】解:∵,∴,∵,∴当添加时,根据可判断;当添加时,根据可判断;当添加时,根据可判断.故答案为:或或.【点睛】本题考查了全等三角形的判定和平行线的性质.熟练掌握全等三角形的判定方法(一般三角形全等的判定有:、、、共四种;直角三角形全等的判定有:、、、、共五种)是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.42.(2022·浙江嘉兴·中考真题)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.【答案】(答案不唯一)【分析】利用等边三角形的判定定理即可求解.【详解】解:添加,理由如下:为等腰三角形,,为等边三角形,故答案为:(答案不唯一).【点睛】本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理.43.(2022·浙江绍兴·中考真题)如图,在中,,,以点为圆心,长为半径作弧,交射线于点,连接,则的度数是______.【答案】10°或100°【分析】分两种情况画图,由作图可知得,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点即为所求;在中,,,,由作图可知:,,;由作图可知:,,,,.综上所述:的度数是或.故答案为:或.【点睛】本题考查了作图复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.44.(2022·云南·中考真题)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是____.【答案】40°或100°【分析】分∠A为三角形顶角或底角两种情况讨论,即可求解.【详解】解:当∠A为三角形顶角时,则△ABC的顶角度数是40°;当∠A为三角形底角时,则△ABC的顶角度数是180°-40°-40°=100°;故答案为:40°或100°.【点睛】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.45.(2022·山东滨州·中考真题)如图,屋顶钢架外框是等腰三角形,其中,立柱,且顶角,则的大小为_______.【答案】30°##30度【分析】先由等边对等角得到,再根据三角形的内角和进行求解即可.【详解】,,,,,故答案为:30°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.46.(2022·山东泰安·中考真题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于_____【答案】【详解】如图,过点A作AH⊥BC于点H,连接BE交AD于点O,∵△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,∴BC=,AD=BD=2.5,∴BC·AH=AC·AB,即2.5AH=6,∴AH=2.4,由折叠的性质可知,AE=AB,DE=DB=DC,∴AD是BE的垂直平分线,△BCE是直角三角形,∴S△ADB=AD·OB=BD·AH,∴OB=AH=2.4,∴BE=4.8,∴CE=.故答案为:.【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH⊥BC于点H,连接BE交AD于点O,利用面积法求出AH和OB的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.47.(2022·湖北武汉·中考真题)如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________.【答案】【分析】如图所示:过点作于点,先求出,再根据勾股定理即可求出的长.【详解】如图所示:过点作于点,则∠BEC=∠DEC=90°,,,∴∠BCE=90°-30°=60°,又,,∴∠ECD=45°=∠D,∴,,,,即.故答案为:.【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.48.(2022·湖北黄冈·中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).【答案】m2-1【分析】2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】∵2m为偶数,∴设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,故答案为:m2-1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.49.(2022·江苏苏州·中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为______.【答案】6【分析】分类讨论:AB=AC=2BC或BC=2AB=2AC,然后根据三角形三边关系即可得出结果.【详解】解:∵△ABC是等腰三角形,底边BC=3∴AB=AC当AB=AC=2BC时,△ABC是“倍长三角形”;当BC=2AB=2AC时,AB+AC=BC,根据三角形三边关系,此时A、B、C不构成三角形,不符合题意;所以当等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.50.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知,,,则________°.【答案】105【分析】根据平行线的性质可得,根据三角形内角和定理以及对顶角相等即可求解.【详解】,,,∵∠E=60°,∴∠F=30°,故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.51.(2022·湖北黄冈·中考真题)如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=_____度.【答案】54【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a∥b,所以,因为是对顶角,所以,所以,因为,所以,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.52.(2022·湖南株洲·中考真题)如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.【答案】15【分析】根据,,判断OB是的角平分线,即可求解.【详解】解:由题意,,,,即点O到BC、AB的距离相等,∴OB是的角平分线,∵,∴.故答案为:15.【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.三.解答题53.(2022·四川广安)如图,点D是△ABC外一点,连接BD、AD,AD与BC交于点O.下列三个等式:①BC=AD;②∠ABC=∠BAD;③AC=BD.请从这三个等式中,任选两个作为已知条件,剩下的一个作为结论,组成一个真命题,将你选择的等式或等式的序号填在下面对应的横线上,然后对该真命题进行证明.已知:,求证:【答案】BC=AD,∠ABC=∠BAD;AC=BD;证明见详解【分析】构造SAS,利用全等三角形的判定与性质即可求解.【详解】已知:BC=AD,∠ABC=∠BAD,求证:AC=BD.证明:在△ABC和△BAD中,∵,∴,∴,即命题得证.【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的判定是解答本题的关键.54.(2022·浙江温州·中考真题)如图,是的角平分线,,交于点E.(1)求证:.(2)当时,请判断与的大小关系,并说明理由.【答案】(1)见解析(2)相等,见解析【分析】(1)利用角平分线的定义和平行线的性质可得结论;

(2)利用平行线的性质可得,

则AD=

AE,从而有CD

=

BE,由(1)

得,,可知BE

=

DE,等量代换即可.(1)证明:∵是的角平分线,∴.∵,∴,∴.(2).理由如下:∵,∴.∵,∴,∴,∴,∴,即.由(1)得,∴,∴.【点睛】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.55.(2022·四川乐山·中考真题)如图,B是线段AC的中点,,求证:.【答案】证明过程见详解【分析】运行平行线的性质可证∠A=∠EBC,∠DBA=∠C,结论即可得证.【详解】证明∵B是AC中点,∴AB=BC,∵,∴∠A=∠EBC,∵,∴∠DBA=∠C,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA).【点睛】本题考查了全等三角形的判定、平行线的性质,掌握两直线平行同位角相等的知识是解答本题的关键.56.(2022·浙江杭州·中考真题)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.【答案】(1)见解析(2)【分析】(1)根据直角三角形的性质可得MC=MA=MB,根据外角的性质可得∠MEC=∠A+∠ACE,∠EMC=∠B+∠MCB,根据等角对等边即可得证;(2)根据CE=CM先求出CE的长,再解直角三角形即可求出FC的长.(1)证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=50°,∴∠MEC=∠EMC,∴CE=CM;(2)解:∵AB=4,∴CE=CM=AB=2,∵EF⊥AC,∠ACE=30°,∴FC=CE•cos30°=.【点睛】本题考查了直角三角形的性质,涉及三角形外角的性质,解直角三角形等,熟练掌握并灵活运用直角三角形的性质是解题的关键.57.(2022·陕西·中考真题)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【答案】见解析【分析】利用角边角证明△CDE≌△ABC,即可证明DE=BC.【详解】证明:∵DE∥AB,∴∠EDC=∠B.又∵CD=AB,∠DCE=∠A,∴△CDE≌△ABC(ASA).∴DE=BC.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.58.(2022·湖南衡阳·中考真题)如图,在中,,、是边上的点,且,求证:.【答案】见解析【分析】利用等腰三角形的性质可得,再由证明,从而得.【详解】证明:∵,∴,在和中,,∴,∴.【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.59.(2022·湖南怀化·中考真题)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【答案】(1)见详解;(2)0.5a.【分析】(1)过点M作MQCN,证明即可;(2)利用等边三角形的性质推出AH=HQ,则PH=HQ+PQ=0.5(AQ+CQ).(1)如下图所示,过点M作MQCN,∵为等边三角形,MQCN,∴,则AM=AQ,且∠A=60°,∴为等边三角形,则MQ=AM=CN,又∵MQCN,∴∠QMP=∠CNP,在,∴,

则MP=NP;(2)∵为等边三角形,且MH⊥AC,∴AH=HQ,

又由(1)得,,则PQ=PC,∴PH=HQ+PQ=0.5(AQ+CQ)=0.5AC=0.5a.【点睛】本题考查了等边三角形的性质与判定、三角形全等的判定,正确作出辅助线是解题的关键.60.(2022·浙江丽水·中考真题)如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.(1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)cm【分析】(1)利用ASA证明即可;(2)过点E作EG⊥BC交于点G,求出FG的长,设AE=x,用x表示出DE的长,在Rt△PED中,由勾股定理求得答案.(1)∵四边形ABCD是矩形,∴AB=CD,∠A=∠B=∠ADC=∠C=90°,由折叠知,AB=PD,∠A=∠P,∠B=∠PDF=90°,∴PD=CD,∠P=∠C,∠PDF=∠ADC,∴∠PDF-∠EDF=∠ADC-∠EDF,∴∠PDE=∠CDF,在△PDE和△CDF中,,∴(ASA);(2)如图,过点E作EG⊥BC交于点G,∵四边形ABCD是矩形,∴AB=CD=EG=4cm,又∵EF=5cm,∴,设AE=x,∴EP=x,由知,EP=CF=x,∴DE=GC=GF+FC=3+x,在Rt△PED中,,即,解得,,∴BC=BG+GC=cm.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.61.(2022·四川自贡·中考真题)如图,△是等边三角形,在直线上,.求证:.【答案】详见解析【分析】由等边三角形的性质以及题设条件,可证△ADB≌△AEC,由全等三角形的性质可得.【详解】证明:∵△是等边三角形,∴AB=AC,∠ABC=∠ACB,∴∠ABD=∠ACE,在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴.【点睛】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大.62.(2022·重庆·中考真题)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为.想法是:以为边作矩形,点A在边上,再过点A作的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作的垂线交于点D.(只保留作图痕迹)在和中,∵,∴.∵,∴______①____.∵,∴______②_____.又∵____③______.∴().同理可得:_____④______..【答案】图见解析,∠ADC=∠F;∠1=∠2;AC=AC;△ABD≌△BAE【分析】根据垂线的作图方法作图即可,利用垂直的定义得到∠ADC=∠F,根据平行线的性质得到∠1=∠2,即可证明△ADC≌△CAF,同理可得△ABD≌△BAE,由此得到结论.【详解】解:如图,AD即为所求,在和中,∵,∴.∵,∴∠ADC=∠F.∵,∴∠1=∠2.又∵AC=AC.∴().同理可得:△ABD≌△BAE..故答案为:∠ADC=∠F;∠1=∠2;AC=AC;△ABD≌△BAE.【点睛】此题考查了全等三角形的判定及性质,垂线的作图方法,矩形的性质,熟练掌握三角形的判定定理是解题的关键.63.(2022·江西·中考真题)如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作的角平分线;(2)在图2中过点作一条直线,使点,到直线的距离相等.【答案】(1)作图见解析部分(2)作图见解析部分【分析】(1)连接,,与交于点,作射线即可;(2)取格点,过点和点作直线即可.(1)解:如图1,连接、,与交于点,设小正方形的边长为1个单位,∵线段和是矩形的两条对角线且交于点,∴,又∵,,∴,∴平分,∴射线即为所作;(2)如图2,连接、、、,直线经过点和点,设小正方形的边长为1个单位,∴,,,,∴,∴四边形是菱形,又∵,,,在和中,∴,∴,∵,∴,∴,∴四边形是正方形,∴,,且,∴直线即为所作.【点睛】本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.64.(2022·新疆·中考真题)如图,在巾,,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将沿AD折叠得到,连接BE.(1)当时,___________;(2)探究与之问的数量关系,并给出证明;(3)设,的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.【答案】(1)(2)(3)【分析】(1)首先由折叠的性质可得,再由等腰三角形的性质可求解;(2)首先由折叠的性质可得,,再由等腰三角形的性质可得,,最后根据角度关系即可求解;(3)首先由等腰直角三角形的性质和直角三角形的性质可求的长,由勾股定理可求的长,最后根据面积和差关系可求解.(1),,,,将沿折叠得到,,,,故答案为:60;(2),理由如下:将沿折叠得到,,,,,,,,;(3)如图,连接,,点是的中点,,,,,,,,,,.【点睛】本题考查了等腰直角三角形的性质,直角三角形的性质,折叠的性质等知识,解题的关键是熟练掌握相关性质并能够灵活运用.65.(2022·重庆·中考真题)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.(1)如图1,若,且,,求的度数;(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;(3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.【答案】(1)(2),证明见解析(3)【分析】(1)在射线上取一点,使得,证明,求出,然后根据四边形内角和定理及邻补角的性质得出答案;(2)证明,求出,倍长至,连接,PQ,证明,求出,在CF上截取FP=FB,连接BP,易得为正三角形,然后求出,证,可得PQ=PC,∠QPF=∠CPB=60°,则可得为正三角形,然后由得出结论;(3)根据可知轨迹为如图3-1中圆弧,O为所在圆的圆心,此时AO垂直平分BC,当、、三点共线时,取得最小值,设,解直角三角形求出PL、PH,再用面积法求出PQ计算即可.(1)解:如图1,在射线上取一点,使得,∵,BC=BC,∴(SAS),∴,∴,∴,∴,∵,∴,∴;(2),证明:∵,,∴△ABC是正三角形,∴AB=BC=AC,∠A=∠DBC=60°,又∵,∴(SAS),∴,∴,∴,倍长至,连接,PQ,∵CN=QN,∠QNF=∠CNM,NF=NM,∴(SAS),∴,∠QFN=∠CMN,由旋转的性质得AC=CM,∴,在CF上截取FP=FB,连接BP,∵,∴,∴为正三角形,∴∠BPF=60°,,∴,∵∠QFN=∠CMN,∴FQ∥CM,∴,∴,又∵,∴(SAS),∴PQ=PC,∠QPF=∠CPB=60°,∴为正三角形,∴,即;(3)由(2)知,∴轨迹为如图3-1中圆弧,O为所在圆的圆心,此时AO垂直平分BC,∴、、三点共线时,取得最小值,∵∠PAO=∠PAB+∠BAO=90°,∴,∴,∵,∴,如图3-2,作HL⊥PK于L,设,在Rt△HLP中,,即,∴,∴,,设PQ与HK交于点R,则HK垂直平分PQ,∵S△PHK=,∴,∴,∴,∵BC=AP=2,∴.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,旋转的性质,平行线的性质,圆的基本性质,解直角三角形,勾股定理等知识,综合性较强,能够作出合适的辅助线是解题的关键.66.(2022·重庆·中考真题)在中,,,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90°得到线段,连接,.(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;(2)如图2,的延长线交于点M,点N在上,且,求证:;(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值.【答案】(1)2(2)见解析(3)【分析】(1)根据已知条件可得为的中点,证明,进而根据直角三角形斜边上的中线等于斜边的一半即可求解;(2)过点作交的延长线于点,证明,,可得,进而根据,即可得出结论,(3)根据(2)可知,当点在线段上运动时,点在平行于的线段上运动,根据题意作出图形,根据点到圆上的距离求最值即可求解.(1)如图,连接将线段绕点E顺时针旋转90°得到线段,是等腰直角三角形,P为FG的中点,,,,,D为的中点,,,,,在中,;(2)如图,过点作交的延长线于点,,,,,是等腰直角三角形,,,在与中,

,,,,又,,

,,,,,

又,,,,,,,;(3)由(2)可知,则当点在线段上运动时,点在平行于的线段上运动,将沿翻折至所在平面内,得到,E为的中点,,,则点在以为圆心为半径的圆上运动,当三点共线时,最小,如图,当运动到与点重合时,取得最小值,.如图,当点运动到与点重合时,取得最小值,此时,则.综上所述,的最小值为.【点睛】本题考查了等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理,全等三角形的性质与判定,轴对称线的性质,点到圆上一点距离最值问题,正确的添加辅助线是解题的关键.67.(2022·山东泰安·中考真题)正方形中,P为边上任一点,于E,点F在的延长线上,且,连接,的平分线交于G,连接.(1)求证:是等腰直角三角形;(2)求证:;(3)若,P为的中点,求的长.【答案】(1)见解析(2)见解析(3)【分析】(1)根据线段垂直平分线的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论