




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,为的直径,弦于点,若,,则的半径为()A.3 B.4 C.5 D.62.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+23.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2 B.0 C.0或2 D.0或﹣24.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.25.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.6.如图,在中,,,于点.则与的周长之比为()A.1:2 B.1:3 C.1:4 D.1:57.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=23178.如图,将绕点旋转180°得到,设点的坐标为,则点的坐标为()A. B. C. D.9.在△中,∠,如果,,那么cos的值为()A. B.C. D.10.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤111.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为()A. B. C. D.12.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.二、填空题(每题4分,共24分)13.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.14.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.15.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On均与直线l相切,设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30时,且r1=1时,r2017=_______.16.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).17.在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.18.若二次函数的图象开口向下,则实数a的值可能是___________(写出一个即可)三、解答题(共78分)19.(8分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(8分)如图,一次函数y=kx+b的图象分别交x轴,y轴于A(4.0),B(0,2)两点,与反比例函数y=的图象交于C.D两点,CE⊥x轴于点E且CE=1.(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出:不等式0<kx+b<的解集.21.(8分)(1)计算;(2)解不等式.22.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x23.(10分)如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=,CD=2,求直径BC的长.24.(10分)已知:二次函数y=x2+bx+c经过原点,且当x=2时函数有最小值;直线AC解析式为y=kx-4,且与抛物线相交于B、C.(1)求二次函数解析式;(2)若S△AOB∶S△BOC=1:3,求直线AC的解析式;(3)在(2)的条件下,点E为线段BC上一动点(不与B、C重合),过E作x轴的垂线交抛物线于F、交x轴于G,是否存在点E,使△BEF和△CGE相似?若存在,请求出所有点E的坐标;若不存在,请说明理由.25.(12分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手.(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是.(2)若从这4人中随机选2人,求这2名同学性别相同的概率.26.如图,在中,AC=4,CD=2,BC=8,点D在BC边上,(1)判断与是否相似?请说明理由.(2)当AD=3时,求AB的长
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意,连接OC,通过垂径定理及勾股定理求半径即可.【详解】如下图,连接OC,∵,,∴CE=4,∵,,∴,故选:C.【点睛】本题主要考查了圆半径的求法,熟练掌握垂径定理及勾股定理是解决本题的关键.2、D【解析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义3、A【解析】试题分析:∵x=1是一元二次方程x1﹣1mx+4=0的一个解,∴4﹣4m+4=0,∴m=1.故选A.考点:一元二次方程的解.4、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.5、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【点睛】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6、A【详解】∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故选A7、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8、D【分析】点与点关于点对称,为点与点的中点,根据中点公式可以求得.【详解】解:设点坐标为点与点关于点对称,为点与点的中点,即解得故选D【点睛】本题考查了坐标与图形变换,得出点、点与点之间的关系是关键.9、A【分析】先利用勾股定理求出AB的长度,从而可求.【详解】∵∠,,∴∴故选A【点睛】本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.10、B【分析】根据反比例函数的性质解答即可.【详解】∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1.故选B.【点睛】本题考查了反比例函数的图象与性质,反比例函数y(k≠0),当k>0时,图象在第一、三象限,且在每一个象限y随x的增大而减小;当k<0时,函数图象在第二、四象限,且在每一个象限y随x的增大而增大,熟练掌握反比例函数的性质是解答本题的关键.11、C【分析】根据平行线的性质,可得∠FAC=∠C=45°,然后根据三角形外角的性质,即可求出∠1.【详解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故选:C.【点睛】此题考查的是平行线的性质和三角形外角的性质,掌握两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角之和是解决此题的关键.12、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.二、填空题(每题4分,共24分)13、10%【解析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.14、2【分析】此题利用三角形相似证明即可,即图中路灯与影长组成的三角形和小艺与自身影长组成的三角形相似,再根据对应边成比计算即可.【详解】如图:∵PO⊥OB,AC⊥AB,∴∠O=∠CAB,∴△POB△CAB,∴,由题意知:PO=9,CA=1.5,OA=20,∴,解得:AB=2,即小艺在路灯下的影子长是2米,故答案为:2.【点睛】此题考查根据相似三角形测影长的相关知识,利用相似三角形的相关性质即可.15、【详解】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆On与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了从特殊到一般的方法解决规律型问题.16、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.17、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可.【详解】设黄球的个数为x个,∵共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50-30=20(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.18、-2(答案不唯一,只要是负数即可)【分析】根据二次函数的图像和性质进行解答即可【详解】解:∵二次函数的图象开口向下,∴a<0∴取a=-2故答案为:-2(答案不唯一,只要是负数即可)【点睛】本题考查了二次函数的图像和性质,熟练掌握相关知识是解题的关键,题目较简单三、解答题(共78分)19、这段河的宽约为37米.【分析】延长CA交BE于点D,得,设,得米,米,根据列方程求出x的值即可得.【详解】解:如图,延长CA交BE于点D,则,由题意知,,,设米,则米,米,在中,,,解得,答:这段河的宽约为37米.20、(1)y=﹣+2,y=﹣;(2)﹣2<x<4【分析】(1)根据待定系数法即可求得一次函数的解析式,由题意可知C的纵坐标为1,代入一次函数解析式即可求得C的坐标,然后代入y=求得m的值,即可求得反比例函数的解析式;(2)根据图象找出y=kx+b在x轴上方且在y=的下方的图象对应的x的范围.【详解】(1)根据题意,得,解得k=﹣,b=2,所以一次函数的解析式为y=﹣+2,由题意可知,点C的纵坐标为1.把y=1代入y=﹣+2,中,得x=﹣2.所以点C坐标为(﹣2,1).把点C坐标(﹣2,1)代入y=中,解得m=﹣3.所以反比例函数的解析式为y=﹣;(2)根据图像可得:不等式4<kx+b<的解集是:﹣2<x<4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.21、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式①按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式②按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出其公共解集即可;【详解】解:(1)原式===0;(2)解不等式①得,x>﹣4;解不等式②得,;∴原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.22、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣2x试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣2x∴点M(x,y)在函数y=﹣2x的图象上的概率为:2考点:列表法或树状图法求概率.23、(1)见解析;(2)2【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可证△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性质可求BC的长.【详解】(1)∵D是弧AC的中点,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直径,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE∽△DBC是解答本题的关键.24、(1)y=x2-4x;(2)直线AC的解析式为y=x-4;(1)存在,E点坐标为E(1.-1)或E(2,-2).【分析】(1)根据二次函数y=x2+bx+c经过原点可知c=0,当x=2时函数有最小值可知对称轴是x=2,故可求出b,即可求解;(2)连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,根据得到,,由EB∥DC,对应线段成比例得到,再联立y=kx-4与y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根据x1,x2之间的关系得到关于k的方程即可求解;(1)根据(1)(2)求出A,B,C的坐标,设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m),根据题意分∠EFB=90°和∠EBF=90°,分别找到图形特点进行列式求解.【详解】解:(1)∵二次函数y=x2+bx+c经过原点,∴c=0∵当x=2时函数有最小值∴,∴b=-4,c=0,∴y=x2-4x;(2)如图,连接OB,OC,过点C作CD⊥y轴于D,过点B作BE⊥y轴于E,∵∴∴∵EB∥DC∴∵y=kx-4交y=x2-4x于B、C∴kx-4=x2-4x,即x2-(k+4)x+4=0∴,或∵xB<xC∴EB=xB=,DC=xC=∴4•=解得k=-9(不符题意,舍去)或k=1∴k=1∴直线AC的解析式为y=x-4;(1)存在.理由如下:由题意得∠EGC=90°,∵直线AC的解析式为y=x-4∴A(0,-4),C(4,0)联立两函数得,解得或∴B(1,-1)设E(m,m-4)(1<m<4)则G(m,0)、F(m,m2-4m)①如图,当∠EFB=90°,即CG//BF时,△BFE∽△CGE.此时F点纵坐标与B点纵坐标相等.∴F(m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CAEPI 62-2023颗粒活性炭吸附-氮气脱附溶剂回收装置技术要求
- T/CACM 1056.91-2019中药材种子种苗橘种苗
- 夫妻共同签协议书
- 云南省应急厅事业单位真题2024
- 沧州市海兴县监察委员会招聘监察辅助人员笔试真题2024
- 2024年衡阳工业职工大学辅导员考试真题
- 2025年休闲食品行业健康化转型下的市场拓展与品牌形象塑造策略研究报告
- 2025年食品与饮料行业:食品行业绿色环保包装应用报告
- 直肠癌临终病人的护理
- 人无信不立主题班会课件
- 沪教版(牛津英语)二年级英语下册全册单元试题
- 折弯工艺培训
- 大学生干部竞选学生会干部竞选207
- 2025-2030年煤炭贸易产业发展分析及发展趋势与投资前景预测报告
- 农业灌溉系统全掌握-故障排查与维护实战指南
- 中国金融黑灰产治理研究报告 2024
- 行政管理专科公共安全管理试题及答案
- 高碳铬铁生产流程
- 学校“校园餐”专项整治推进工作情况汇报范文
- 委托清算协议书范本
- 福州教育学院附属中学2025年高三全真四模数学试题试卷
评论
0/150
提交评论