




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果,那么代数式的值是().A.2 B. C. D.2.如图,在中,,于点,,,则的值为()A.4 B. C. D.73.若关于的方程的解为,,则方程的解为()A. B. C. D.4.如图,在第一象限内,,是双曲线()上的两点,过点作轴于点,连接交于点,则点的坐标为()A. B. C. D.5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°6.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是()A.取时的函数值小于0B.取时的函数值大于0C.取时的函数值等于0D.取时函数值与0的大小关系不确定7.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A. B.1.5 C.2 D.2.58.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°9.已知点,,是抛物线上的三点,则a,b,c的大小关系为()A. B. C. D.10.已知点在同一个函数的图象上,这个函数可能是()A. B. C. D.11.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.下列标志中是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知函数,当时,函数的最小值是-4,实数的取值范围是______.14.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.15.已知x=﹣1是方程x2+ax+4=0的一个根,则方程的另一个根为_____.16.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.17.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.18.在比例尺为1:3000000的地图上,测得AB两地间的图上距离为5厘米,则AB两地间的实际距离是______千米.三、解答题(共78分)19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(8分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)将以原点为旋转中心旋转得到,画出旋转后的.(2)平移,使点的对应点坐标为,画出平移后的(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.21.(8分)阅读下列材料后,用此方法解决问题.解方程:.解:∵时,左边右边.∴是方程的一个解.可设则:∴∴∴又∵可分解为∴方程的解满足或或.∴或或.(1)解方程;(2)若和是关于的方程的两个解,求第三个解和,的值.22.(10分)如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)23.(10分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.24.(10分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.25.(12分)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,求PD的长度最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.26.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.
参考答案一、选择题(每题4分,共48分)1、A【解析】(a-)·=·=·=a+b=2.故选A.2、B【分析】利用和可知,然后分别在和中利用求出BD和CD的长度,最后利用BC=BD+CD即可得出答案.【详解】∵∴∵∴在中∵,∴在中∵,∴∴故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.3、C【分析】设方程中,,根据已知方程的解,即可求出关于t的方程的解,然后根据即可求出结论.【详解】解:设方程中,则方程变为∵关于的方程的解为,,∴关于的方程的解为,,∴对于方程,或3解得:,,故选C.【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.4、D【分析】先根据P点坐标计算出反比例函数的解析式,进而求出M点的坐标,再根据M点的坐标求出OM的解析式,进而将代入求解即得.【详解】解:将代入得:∴∴反比例函数解析式为将代入得:∴∴设OM的解析式为:∴将代入得∴∴OM的解析式为:当时∴点的坐标为.故选:D.【点睛】本题考查待定系数法求解反比例函数和正比例函数解析式,解题关键是熟知求反比例函数和正比例函数解析式只需要一个点的坐标.5、C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.
显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.6、B【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.7、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式计算即可.【详解】图中五个扇形(阴影部分)的面积是,故选B.8、C【分析】直接利用圆内接四边形的性质分析得出答案.【详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【点睛】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.9、D【分析】将A,B,C三点坐标分别代入抛物线,然后化简计算即可.【详解】解:∵点,,是抛物线上的三点,∴,,.∴故选:D.【点睛】本题考查二次函数图象上点的坐标,将点坐标分别代入关系式,正确运算,求出a,b,c是解题的关键.10、D【解析】由点的坐标特点,可知函数图象关于轴对称,于是排除选项;再根据的特点和二次函数的性质,可知抛物线的开口向下,即,故选项正确.【详解】点与点关于轴对称;由于的图象关于原点对称,因此选项错误;由可知,在对称轴的右侧,随的增大而减小,对于二次函数只有时,在对称轴的右侧,随的增大而减小,选项正确故选.【点睛】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11、C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形12、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称图形,符合题意;
C、既不是轴对称图形,也不是中心对称的图形,不合题意;
D、是轴对称图形,不是中心对称的图形,不合题意.
故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.二、填空题(每题4分,共24分)13、【分析】将二次函数化为顶点式,可知当时,函数的最小值为,再结合当时,函数的最小值是-4,可得的取值范围.【详解】∵,∴抛物线开口向上,当,二次函数的最小值为∵当时,函数的最小值是-4∴的取值范围是:.【点睛】本题考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.14、x(x-12)=864【解析】设矩形田地的长为x步,那么宽就应该是(x−12)步.根据矩形面积=长×宽,得:x(x−12)=864.故答案为x(x−12)=864.15、﹣4【分析】根据根与系数的关系:即可求出答案.【详解】设另外一根为x,由根与系数的关系可知:﹣x=4,∴x=﹣4,故答案为:﹣4【点睛】本题考查根与系数,解题的关键是熟练运用根与系数的关系,本题属于基础题型.16、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.17、【分析】根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.【详解】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.18、150【分析】设实际距离为x千米,根据比例尺=图上距离:实际距离计算即可得答案.【详解】设实际距离为x千米,5厘米=0.00005千米,∵比例尺为1:3000000,图上距离为5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案为:150【点睛】本题考查了比例尺的定义,能够根据比例尺由图上距离正确计算实际距离是解题关键,注意单位的换算.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定20、(1)见解析;(2)见解析;(3)旋转中心坐标为.【分析】(1)依据旋转的性质确定出A1,B1,C1,然后用线段吮吸连接即可得到△A1B1C1;(2)依据点A的对应点A2坐标为(3,-3),确定出平移的方式,然后根据平移的性质即可画出平移后的△A2B2C2;(3)连接对应点的连线可发现旋转中心.【详解】解:(1)如图所示:即为所求;(2)如图所示:即为所示;(3)如图,旋转中心坐标为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.本题也考查了平移作图.21、(1)或或;(2)第三个解为,,.【分析】(1)模仿材料可得:是的一个解.可设,=,求出m,n再因式分解求解;(2)由和是方程的两个解,可设,则:=,求出k,再因式分解解方程.【详解】解:(1)∵时,左边==0=右边,∴是的一个解.可设∴=∴∴∴=∴或或.∴方程的解为或或.(2)∵和是方程的两个解∴可设,则:==∴∴∴=0∴或或.∴方程的解为或或.∴第三个解为,,.【点睛】考核知识点:因式分解高次方程.理解材料,熟练掌握整式乘法和因式分解方法是关键.22、(1)见解析;(2)扫过的图形面积为2π.【解析】(1)先确定A、B、C三点分别绕O点旋转90°后的点的位置,再顺次连接即可得到所求图形;(2)先运用勾股定理求解出OA的长度,再求以OA为半径、圆心角为90°的扇形面积即可.【详解】(1)如图,先确定A、B、C三点分别绕O点旋转90°后的点A1、B1、C1,再顺次连接即可得到所求图形,△A1B1C1即为所求三角形;(2)由勾股定理可知OA=,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1=答:扫过的图形面积为2π.【点睛】本题结合网格线考查了旋转作图以及扇形面积公式,熟记相关公式是解题的关键.23、(1)证明见解析(1)【解析】试题分析:(1)欲证明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠1=∠3得到:BC=BE;(1)通过相似三角形△COD∽△EOB的对应边成比例得到,然后利用分式的性质可以求得.解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠1=∠1.∵CE平分∠BCD,∴∠1=∠3,∴∠1=∠3,∴BC=BE,∴△EBC是等腰三角形;(1)∵∠1=∠1,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四边形ABCD,∴CD=AB=2.∵BE=BC=5,∴==,∴=.点睛:本题考查了平行四边形的性质,相似三角形的判定与性质以及等腰三角形的判定.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用三角形相似的性质时主要利用相似比计算相应线段的长.24、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)【分析】(1)c=1,点B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【详解】(1)∵OB=OC=1,∴点C的坐标为C(0,1),c=1,点B的坐标为B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴于点H,交BC于点M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,设直线BC的表达式为:,将C(0,1),B(1,0)代入得,解得:,∴直线BC的表达式为:y=﹣x+1,设点D的坐标为(x,﹣x2+2x+1),则点M(x,﹣x+1),∴DM==2,解得:x=1或2,故点D的坐标为:(1,4)或(2,1);(1)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,如图,∵点E的坐标为(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,设MH=x,则MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,则OM=MG+GO=+,点M的坐标为(0,4),设直线BM的表达式为:,将点B(1,0)、M(0,4)代入得:,解得:,∴直线BM的表达式为:y=x+4,解方程组解得:x=1(舍去)或,将x=代入y=x+4得y=,故点P的坐标为(,);②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分线,∴EN=OE=,BN=OB=1,设MN=x,则ME=,在△OBM中,OB2+OM2=MB2,即,解得:,∴,则OM=ME+EO=+,点M的坐标为(0,-4),设直线BM的表达式为:,将点B(1,0)、M(0,-4)代入得:,解得:,∴直线BM的表达式为:,解方程组解得:x=1(舍去)或,将x=代入得,故点P的坐标为(,);综上,点P的坐标为:(,)或(,).【点睛】本题考查的是二次函数的综合运用,涉及到一次函数、平行线分线段成比例定理、勾股定理、角平分线的性质等,其中第(1)问要注意分类求解,避免遗漏.25、(1)y=x2﹣4x+1;(2)PD的长度最大时点P的坐标为(,﹣);(1)点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2)【分析】(1)用待定系数法法求解;把已知点的坐标分别代入解析式可得;(2)设P(m,m2﹣4m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人类工业活动方案
- 山东医学高等专科学校《运动系统》2023-2024学年第二学期期末试卷
- 辽宁城市建设职业技术学院《药物合成反应实践》2023-2024学年第二学期期末试卷
- 邯郸学院《社会工作机构人力资源管理》2023-2024学年第二学期期末试卷
- 枣庄学院《设计调研》2023-2024学年第二学期期末试卷
- 珠海城市职业技术学院《植物认知》2023-2024学年第二学期期末试卷
- 今日亲子餐厅活动方案
- 2024年度河北省二级注册建筑师之建筑结构与设备能力提升试卷A卷附答案
- 运输商品车合同协议书
- 渔业水域使用权协议
- 2021公考题目及答案
- 西安无人机项目商业计划书
- 2024年宿迁市泗阳县事业单位招聘笔试真题
- DB32/T 4273-2022计算机辅助人工处方审核标准化工作规范
- 人教版(2024)七年级下册英语期末复习:完形填空 专项练习题(含答案)
- 2025年中国ECTFE树脂行业市场前景预测及投资价值评估分析报告
- 2025年中国氢氟酸市场研究报告
- 矿井电气安全培训课件
- 景区设备联营协议书
- 2025年虚拟现实与增强现实技术考试试题及答案
- 旋挖钻孔灌注桩施工流程课件
评论
0/150
提交评论