版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,图象关于轴对称的为()A. B.,C. D.2.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生3.设全集U=R,集合,则()A. B. C. D.4.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π5.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为()A.8年 B.9年 C.10年 D.11年6.设集合,,则()A. B.C. D.7.一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件8.设,,,则、、的大小关系为()A. B. C. D.9.已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、、分别为侧棱,,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为()A. B. C. D.10.已知双曲线的一条渐近线方程是,则双曲线的离心率为()A. B. C. D.11.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.14.在等差数列()中,若,,则的值是______.15.我国古代数学著作《九章算术》中记载“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”设人数、物价分别为、,满足,则_____,_____.16.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)若点在直线上,求直线的极坐标方程;(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.18.(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)19.(12分)已知变换将平面上的点,分别变换为点,.设变换对应的矩阵为.(1)求矩阵;(2)求矩阵的特征值.20.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.21.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)22.(10分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【题目详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【答案点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.2.C【答案解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【题目详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【答案点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.3.A【答案解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【题目详解】,,则,故选:A.【答案点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.4.D【答案解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.5.D【答案解析】
根据样本中心点在回归直线上,求出,求解,即可求出答案.【题目详解】依题意在回归直线上,,由,估计第年维修费用超过15万元.故选:D.【答案点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.6.D【答案解析】
利用一元二次不等式的解法和集合的交运算求解即可.【题目详解】由题意知,集合,,由集合的交运算可得,.故选:D【答案点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.7.D【答案解析】
由题意列出约束条件和目标函数,数形结合即可解决.【题目详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【答案点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.8.D【答案解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【答案点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.9.D【答案解析】
如图,平面截球所得截面的图形为圆面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【题目详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,,,,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【答案点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.10.D【答案解析】双曲线的渐近线方程是,所以,即,,即,,故选D.11.B【答案解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【答案点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.12.D【答案解析】
a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【题目详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【答案点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.130.15.【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【题目详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【答案点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.14.-15【答案解析】
是等差数列,则有,可得的值,再由可得,计算即得.【题目详解】数列是等差数列,,又,,,故.故答案为:【答案点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.15.【答案解析】
利用已知条件,通过求解方程组即可得到结果.【题目详解】设人数、物价分别为、,满足,解得,.故答案为:;.【答案点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题.16.【答案解析】
基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率.【题目详解】解:袋中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,∴其中三种颜色的球都有的概率是p.故答案为:.【答案点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】
(1)利用消参法以及点求解出的普通方程,根据极坐标与直角坐标的转化求解出直线的极坐标方程;(2)将的坐标设为,利用点到直线的距离公式结合三角函数的有界性,求解出取最小值时对应的值.【题目详解】(1)消去参数得普通方程为,将代入,可得,即所以的极坐标方程为(2)的直角坐标方程为直线的直角坐标方程设的直角坐标为∵在直线上,∴的最小值为到直线的距离的最小值∵,∴当,时取得最小值即,∴【答案点睛】本题考查直线的参数方程、普通方程、极坐标方程的互化以及根据曲线上一点到直线距离的最值求参数,难度一般.(1)直角坐标和极坐标的互化公式:;(2)求解曲线上一点到直线的距离的最值,可优先考虑将点的坐标设为参数方程的形式,然后再去求解.18.(Ⅰ),,,,;(Ⅱ)为偶数时,,为奇数时,;(Ⅲ)证明见解析,,【答案解析】
(Ⅰ)根据题意直接写出答案.(Ⅱ)讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.(Ⅲ)讨论当为奇数时,,至少存在一个全为1的拆分,故,当为偶数时,根据对应关系得到,再计算,,得到答案.【题目详解】(Ⅰ)整数4的所有“正整数分拆”为:,,,,.(Ⅱ)当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.(Ⅲ)当为奇数时,,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它至少对应了和的均为奇数的“正整数分拆”,故.综上所述:.当时,偶数“正整数分拆”为,奇数“正整数分拆”为,;当时,偶数“正整数分拆”为,,奇数“正整数分拆”为,故;当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整数分拆”,故.综上所述:使成立的为:或.【答案点睛】本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.19.(1)(2)1或6【答案解析】
(1)设,根据变换可得关于的方程,解方程即可得到答案;(2)求出特征多项式,再解方程,即可得答案;【题目详解】(1)设,则,,即,解得,则.(2)设矩阵的特征多项式为,可得,令,可得或.【答案点睛】本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.20.(I);(II)最大值为,最小值为.【答案解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长白山职业技术学院高职单招职业适应性考试备考试题及答案详解
- 2025宁夏国投集团工作人员招聘及笔试历年参考题库附带答案详解
- 2025天津政昕资产运营管理有限公司所属汇融商管公司招聘2人笔试历年参考题库附带答案详解
- 2025国家统计局洱源调查队委托洱源县人力资源有限责任公司招聘驾驶员1人(云南)笔试历年参考题库附带答案详解
- 2025四川营华物业管理有限公司招聘劳务工作人员3人笔试历年参考题库附带答案详解
- 煤矿矿井防灭火工持证上岗资格考试试题参考答案
- 基于区块链的跨境教育数据安全共享平台构建与评估课题报告教学研究课题报告
- 2025四川省酒业集团有限责任公司及其下属子公司招聘5人笔试历年参考题库附带答案详解
- 2026年山西林业职业技术学院单招职业技能笔试备考题库及答案详解
- 电工(高级)资格证考试全真模拟模拟题及1套参考答案详解
- GB/T 46561-2025能源管理体系能源管理体系审核及认证机构要求
- 物业保安主管年终述职报告
- 2025年国家开放大学《市场调研方法与实践》期末考试参考题库及答案解析
- 儿童心肺复苏操作要点与急救流程
- 水电解制氢设备运行维护手册
- 无人机专业英语 第二版 课件 6.1 The Basic Operation of Mission Planner
- 2025-2030中国生物炼制行业市场现状供需分析及投资评估规划分析研究报告
- 透析患者营养不良课件
- 国家开放大学《营销策划案例分析》形考任务5答案
- 2025年福建省高二学业水平考试信息技术试题(含答案详解)
- 电信集团采购管理办法
评论
0/150
提交评论