版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定2.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④ B.①③ C.②③④ D.①③④3.若直线与半径为5的相离,则圆心与直线的距离为()A. B. C. D.4.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)5.如图,在中,,,,以点为圆心,的长为半径作弧,交于点,则阴影部分的面积是()A. B. C. D.6.现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是()A.处 B.国 C.敬 D.王7.将抛物线向上平移两个单位长度,得到的抛物线解析式是()A. B.C. D.8.如图,数轴上,,,四点中,能表示点的是()A. B. C. D.9.如图,矩形的对角线交于点.若,,则下列结论错误的是()A. B. C. D.10.如图,点M为反比例函数y=上的一点,过点M作x轴,y轴的垂线,分别交直线y=-x+b于C,D两点,若直线y=-x+b分别与x轴,y轴相交于点A,B,则AD·BC的值是()A.3 B.2 C.2 D.11.抛物线的项点坐标是()A. B. C. D.12.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20° B.30° C.40° D.70°二、填空题(每题4分,共24分)13.分解因式:=__________14.二次函数的图象如图所示,若点,是图象上的两点,则____(填“>”、“<”、“=”).15.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.16.如果一个直角三角形的两条边的长度分别是3cm和4cm,那么这个直角三角形的第三边的长度是____________.17.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)18.已知,则的值为___________.三、解答题(共78分)19.(8分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.20.(8分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.21.(8分)如图,在中,,,,点在上,,以为半径的交于点,的垂直平分线交于点,交于点,连接.(1)求证:直线是的切线;(2)求线段的长.22.(10分)计算:()-1-cos45°-(2020+π)0+3tan30°23.(10分)如图,点E为□ABCD中一点,EA=ED,∠AED=90º,点F,G分别为AB,BC上的点,连接DF,AG,AD=AG=DF,且AG⊥DF于点H,连接EG,DG,延长AB,DG相交于点P.(1)若AH=6,FH=2,求AE的长;(2)求证:∠P=45º;(3)若DG=2PG,求证:∠AGE=∠EDG.24.(10分)如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.25.(12分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.26.先化简,后求值:,其中x=﹣1.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、A【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.3、B【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线与半径为5的相离,∴圆心与直线的距离满足:.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.4、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.5、A【分析】根据直角三角形的性质得到AC=BC=2,∠B=60°,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AC=BC=2,∠B=60°,∴阴影部分的面积=S△ACB-S扇形BCD=×2×2-=故选:A.【点睛】本题考查了扇形面积的计算,含30°角的直角三角形的性质,正确的识别图形是解题的关键.6、D【分析】利用轴对称图形定义判断即可.【详解】解:四个汉字中,可以看作轴对称图形的是:王,故选:D.【点睛】本题考查轴对称图形的定义,轴对称图形是指沿着某条直线对称后能完全重合的图形,熟练掌握轴对称图形的概念是解决本题的关键.7、D【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】由题意得=.故选D.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.8、C【解析】首先判断出的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示点是哪个即可.【详解】解:∵≈1.732,在1.5与2之间,∴数轴上,,,四点中,能表示的点是点P.故选:C【点睛】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.9、D【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,再解直角三角形求出即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,A、在Rt△ABC中,∴,此选项不符合题意由三角形内角和定理得:∠BAC=∠BDC=∠α,B、在Rt△BDC中,,∴,故本选项不符合题意;C、在Rt△ABC中,,即AO=,故本选项不符合题意;D、∴在Rt△DCB中,∴,故本选项符合题意;故选:D.【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.10、C【分析】设点M的坐标为(),将代入y=-x+b中求出C点坐标,同理求出D点坐标,再根据两点之间距离公式即可求解.【详解】解:设点M的坐标为(),将代入y=-x+b中,得到C点坐标为(),将代入y=-x+b中,得到D点坐标为(),∵直线y=-x+b分别与x轴,y轴相交于点A,B,∴A点坐标(0,b),B点坐标为(b,0),∴AD×BC=,故选:C.【点睛】本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.11、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标.【详解】解:由题知:抛物线的顶点坐标为:故选:D.【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键.12、A【分析】根据邻补角的性质,求出∠BOC的值,再根据圆周角与圆心角的关系求出∠D的度数即可.【详解】∵∠AOC=140°,∴∠BOC=180°-∠AOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选A.【点睛】本题考查了圆周角定理,知道同弧所对的圆周角是圆心角的一半是解题的关键.二、填空题(每题4分,共24分)13、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).14、>【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线上,∴>.故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A和点B都在对称轴的右侧.15、-1【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,再求出m+n的值即可.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,
∴-2+4=-m,-2×4=n,
解得:m=-2,n=-8,
∴m+n=-1,
故答案为:-1.【点睛】本题考查了根与系数的关系的应用,能根据根与系数的关系得出-2+4=-m,-2×4=n是解此题的关键.16、5cm或cm【分析】分两种情况:当4cm为直角边时,利用勾股定理求出第三边;当4cm为斜边时,利用勾股定理求出第三边.【详解】∵该三角形是直角三角形,∴①当4cm为直角边时,第三边长为cm;②当4cm为斜边时,第三边长为cm,故答案为:5cm或cm.【点睛】此题考查勾股定理,题中没有确定已知的两条边长是直角边或是斜边,故应分情况讨论,避免漏解.17、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.18、【分析】设,分别表示出a,b,c,即可求出的值.【详解】设∴∴故答案为【点睛】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.三、解答题(共78分)19、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=,∠CBE=,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE=80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.20、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.21、(1)见解析;(2).【分析】(1)连接,利用垂直平分线的性质及等腰三角形的性质通过等量代换可得出,即,则,则结论可证;(2)连接,设,,利用勾股定理即可求出x的值.【详解】(1)证明:连接,∵垂直平分,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴是的切线.(2)解:连接,OD,设,,∵,∴,解得,∴.【点睛】本题主要考查切线的判定及勾股定理,掌握切线的判定方法及勾股定理是解题的关键.22、.【分析】根据负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值计算即可.【详解】解:()-1-cos45°-(2020+π)0+3tan30°=2--1+=2-1-1+=【点睛】此题考查的是实数的混合运算,掌握负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值是解决此题的关键.23、(1);(2)见详解;(3)见详解【分析】(1)在Rt△ADH中,设AD=DF=x,则DH=x-2,由勾股定理,求出AD的长度,由等腰直角三角形的性质,即可求出AE的长度;(2)根据题意,设∠ADF=2a,则求出∠FAH=,然后∠ADG=∠AGD=,再根据三角形的外角性质,即可得到答案;(3)过点A作AM⊥DP于点M,连接EM,EF,根据等腰直角三角形的判定和性质,全等三角形的判定和性质,得到角之间的关系,从而通过等量互换,即可得到结论成立.【详解】解:(1)∵AG⊥DF于点H,∴∠AHD=90°,∵AH=6,FH=2,在Rt△ADH中,设AD=DF=x,则DH=DFFH=x-2,由勾股定理,得:,∴,∴,即AD=DF=AG=10,∵EA=ED,∠AED=90º,∴△ADE是等腰直角三角形,∴AE=DE=;(2)如图:∵∠AED=90º,AG⊥DF,∴∠EAH=∠EDH,设∠ADF=2a,∵DA=DF,则∠AFH=∠DAF=,∴∠FAH=,∴∠DAH=,∵AD=AG,∴∠ADG=∠AGD=,∴;(3)过点A作AM⊥DP于点M,连接EM,EF,如图:∵AD=AG,DG=2PG,∴PG=GM=DM,∵∠P=45°,∴△APM是等腰直角三角形,∴AM=PM=DG,∵∠ANO=∠DNM,∠AED=∠AMD=90°,∴∠OAM=∠ODG,∵AE=DE,AM=DG,∴△AEM≌△DEG,∴EM=EG,∠AEM=∠DEG,∴∠AED+∠DEM=∠DEM+∠MEG,∴∠MEG=∠AED=90°,∴△MEG是等腰直角三角形;∴∠EMG=45°,∵AM⊥DP,∴∠AME=∠EMG=45°,∴ME是∠AMP的角平分线,∵AM=PM,∴ME⊥AP,∵∠AOH=∠DOE,∴∠OAH=∠ODE,∴△AEG≌△DEF(SAS),∴∠AEG=∠DEF,∴∠AED+∠AEF=∠AEF+∠FEG,∴∠FEG=∠AED=90°,∴∠FEG+∠MEG=180°,即点F、E、M,三点共线,∴MF⊥AP,∵AM平分∠DAG,∴∠GAM=∠DAM,∵∠EAN+∠DAM=45°,∴∠EAN+∠GAM=45°,∵∠PAG+∠GAM=45°,∴∠EAN=∠PAG,∵∠PAG+∠AFH=∠DFE+∠AFH=90°,∴∠EAN=∠PAG=∠DFE,∵△AEG≌△DEF,∴∠AGE=∠DFE=∠EAN,∵∠EAN=∠EDM,∴∠AGE=∠EDM,∴∠AGE=∠EDG.【点睛】本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,三角形的内角和定理,以及角平分线的性质,解题的关键是熟练掌握所学的性质进行证明,注意正确做出辅助线,找出角之间的关系,边之间的关系,从而进行证明.24、(1);(2)PG=;(3)存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或.【解析】试题分析:(1)将A(1,1),B(1,4)代入,运用待定系数法即可求出抛物线的解析式.(2)由E(m,1),B(1,4),得出P(m,),G(m,4),则由可用含m的代数式表示PG的长度.(3)先由抛物线的解析式求出D(﹣3,1),则当点P在直线BC上方时,﹣3<m<1.分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.试题解析:解:(1)∵抛物线与x轴交于点A(1,1),与y轴交于点B(1,4),∴,解得.∴抛物线的解析式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 35077-2025机械安全 局部排气通风系统 安全要求》
- 深度解析(2026)《GBT 34428.2-2017高速公路监控设施通信规程 第2部分 车辆检测器》
- 华东材料有限公司2026届校园招聘8人备考题库及1套完整答案详解
- 外科学总论下肢深静脉血栓的物理治疗课件
- 2026年中共二大会址纪念馆招聘派遣制讲解员3名期待你的加入备考题库及答案详解(新)
- 南京市雨花台区医疗保险管理中心等单位2025年公开招聘编外工作人员备考题库及答案详解(夺冠系列)
- 2026年澄江市教育体育系统公开招聘毕业生备考题库及一套参考答案详解
- 内科学总论异物梗阻急救技术课件
- 2026年重庆机床(集团)有限责任公司招聘40人备考题库附答案详解
- 2026年育才实验小学产假顶岗教师招聘备考题库及参考答案详解1套
- 宫颈癌放化疗护理查房
- (新教材)2025年人教版三年级上册数学 第2课时 没有括号的两级混合运算 课件
- 石材挂靠资质协议书
- 路基注浆施工技术规范
- 公会转会协议书范本
- 2025书记员考试及答案
- 2025年国家开放大学《环境工程学》期末考试复习试题及答案解析
- 煤矿开采培训课件
- 学校物业服务方案(暗标)
- 青霉素过敏抢救流程
- 人行道拆除及修复施工方案
评论
0/150
提交评论